

flask-peewee

Warning

I’m sorry to announce that flask-peewee will now be in maintenance-only mode. This decision is motivated by a number of factors:

	Flask-Admin [https://flask-admin.readthedocs.io/en/latest/] provides a superior admin interface and has support for peewee models.

	Flask-Security [https://pythonhosted.org/Flask-Security/] and Flask-Login [https://flask-login.readthedocs.io/en/latest/] both provide authentication functionality, and work well with Peewee.

	Most importantly, though, I do not find myself wanting to work on flask-peewee.

I plan on rewriting the Database and REST API portions of flask-peewee and repackaging them as a new library, but flask-peewee as it stands currently will be in maintenance-only mode.

Welcome to the flask-peewee documentation!

provides a layer of integration between the flask [http://flask.pocoo.org/]
web framework and the peewee orm [https://peewee.readthedocs.io/].

Contents:

	Installing
	Using git

	Getting Started
	Creating a flask app

	Creating a simple model

	Setting up a simple base template

	Adding users to the site

	Managing content using the admin area

	Exposing content using a REST API

	Database Wrapper
	Other examples

	Admin Interface
	Getting started

	Customizing how models are displayed

	Nicer display for Foreign Key fields

	Creating admin panels

	Handling File Uploads

	Authentication
	Getting started

	Marking areas of the site as login required

	Retrieving the current user

	Accessing the user in the templates

	Using a custom “User” model

	REST Api
	Getting started with the API

	Creating a RestAPI

	Customizing what is returned

	Allowing users to post objects

	Restricting API access on a per-model basis

	Locking down a resource

	Filtering records and querying

	Sorting results

	Limiting results and pagination

	Utilities
	Getting objects

	Misc

	Using gevent
	Database configuration

	Monkey-patch the thread module

	Rationale

API in depth:

	API
	Admin

	Auth

	Database

	REST API

	Utilities

Indices and tables

	Index

	Module Index

	Search Page

Installing

flask-peewee can be installed very easily using pip [http://www.pip-installer.org/en/latest/index.html].

pip install flask-peewee

If you do not have the dependencies installed already, pip will install them
for you, but for reference they are:

	flask [https://github.com/mitsuhiko/flask]

	peewee [https://github.com/coleifer/peewee]

	wtforms [https://bitbucket.org/simplecodes/wtforms]

	wtf-peewee [https://github.com/coleifer/wtf-peewee]

	python 2.5 or greater

Using git

If you want to run the very latest, feel free to pull down the repo from github
and install by hand.

git clone https://github.com/coleifer/flask-peewee.git
cd flask-peewee
python setup.py install

You can run the tests using the test-runner:

python setup.py test

Getting Started

The goal of this document is to help get you up and running quickly. So without
further ado, let’s get started.

Note

Hopefully you have some familiarity with the flask framework [http://flask.pocoo.org/] and
the peewee orm [https://peewee.readthedocs.io/], but if not those links
should help you get started.

Note

For a complete example project, check the example app [https://github.com/coleifer/flask-peewee/tree/master/example]
that ships with flask-peewee.

Creating a flask app

First, be sure you have installed flask-peewee and its dependencies.
You can verify by running the test suite: python setup.py test.

After ensuring things are installed, open a new file called “app.py” and enter the
following code:

from flask import Flask

app = Flask(__name__)
app.config.from_object(__name__)

if __name__ == '__main__':
 app.run()

This isn’t very exciting, but we can check out our project by running the app:

$ python app.py
 * Running on http://127.0.0.1:5000/
 * Restarting with reloader

Navigating to the url listed will show a simple 404 page, because we haven’t
configured any templates or views yet.

Creating a simple model

Let’s add a simple model. Before we can do that, though, it is necessary to
initialize the peewee database wrapper and configure the database:

from flask import Flask

flask-peewee bindings
from flask_peewee.db import Database

configure our database
DATABASE = {
 'name': 'example.db',
 'engine': 'peewee.SqliteDatabase',
}
DEBUG = True
SECRET_KEY = 'ssshhhh'

app = Flask(__name__)
app.config.from_object(__name__)

instantiate the db wrapper
db = Database(app)

if __name__ == '__main__':
 app.run()

What this does is provides us with request handlers which connect to the database
on each request and close it when the request is finished. It also provides a
base model class which is configured to work with the database specified in the
configuration.

Now we can create a model:

import datetime
from peewee import *

class Note(db.Model):
 message = TextField()
 created = DateTimeField(default=datetime.datetime.now)

Note

The model we created, Note, subclasses db.Model, which in turn is a subclass
of peewee.Model that is pre-configured to talk to our database.

Setting up a simple base template

We’ll need a simple template to serve as the base template for our app, so create
a folder named templates. In the templates folder create a file base.html
and add the following:

<!doctype html>
<html>
<title>Test site</title>
<body>
 <h2>{% block content_title %}{% endblock %}</h2>
 {% block content %}{% endblock %}
</body>
</html>

Adding users to the site

Before we can edit these Note models in the admin, we’ll need to have some
way of authenticating users on the site. This is where Auth comes in.
Auth provides a User model and views for logging in and logging out,
among other things, and is required by the Admin.

from flask_peewee.auth import Auth

create an Auth object for use with our flask app and database wrapper
auth = Auth(app, db)

Let’s also modify the code that runs our app to ensure our tables get created
if need be:

if __name__ == '__main__':
 auth.User.create_table(fail_silently=True)
 Note.create_table(fail_silently=True)

 app.run()

After cleaning up the imports and declarations, we have something like the following:

import datetime
from flask import Flask
from flask_peewee.auth import Auth
from flask_peewee.db import Database
from peewee import *

configure our database
DATABASE = {
 'name': 'example.db',
 'engine': 'peewee.SqliteDatabase',
}
DEBUG = True
SECRET_KEY = 'ssshhhh'

app = Flask(__name__)
app.config.from_object(__name__)

instantiate the db wrapper
db = Database(app)

class Note(db.Model):
 message = TextField()
 created = DateTimeField(default=datetime.datetime.now)

create an Auth object for use with our flask app and database wrapper
auth = Auth(app, db)

if __name__ == '__main__':
 auth.User.create_table(fail_silently=True)
 Note.create_table(fail_silently=True)

 app.run()

Managing content using the admin area

Now we’re ready to add the admin. Place the following lines of code after
the initialization of the Auth class:

from flask_peewee.admin import Admin

admin = Admin(app, auth)
admin.register(Note)

admin.setup()

We now have a functioning admin site! Of course, we’ll need a user log in with,
so open up an interactive python shell in the directory alongside the app and run
the following:

from app import auth
auth.User.create_table(fail_silently=True) # make sure table created.
admin = auth.User(username='admin', email='', admin=True, active=True)
admin.set_password('admin')
admin.save()

It should now be possible to:

	navigate to http://127.0.0.1:5000/admin/

	enter in the username and password (“admin”, “admin”)

	be redirected to the admin dashboard

[image: _images/fp-getting-started.jpg]
The dashboard is pretty empty right now. Go ahead and add a few notes (http://127.0.0.1:5000/admin/note/). If you navigate now to the note
modeladmin you will see something like this:

[image: _images/fp-note-admin.jpg]
This is pretty lousy so let’s clean it up to display the message and when it was
published. We can do that by customizing the columns displayed. Edit the app with
the following changes:

from flask_peewee.admin import Admin, ModelAdmin

class NoteAdmin(ModelAdmin):
 columns = ('message', 'created',)

admin = Admin(app, auth)

admin.register(Note, NoteAdmin)

admin.setup()

Now our modeladmin should look more like this:

[image: _images/fp-note-admin-2.jpg]
Let’s go ahead and add the auth.User model to the admin as well:

admin.register(Note, NoteAdmin)
auth.register_admin(admin)

admin.setup()

Exposing content using a REST API

Adding a REST API is very similar to how we added the Admin interface.
We will create a RestAPI object, and then register our project’s models
with it. If we want to customize things, we can subclass RestResource.

The first step, then, is to create the RestAPI object:

from flask_peewee.rest import RestAPI

create a RestAPI container
api = RestAPI(app)

api.setup()

This doesn’t do anything yet, we need to register models with it first. Let’s
register the Note model from earlier:

create a RestAPI container
api = RestAPI(app)

register the Note model
api.register(Note)

api.setup()

Assuming your project is still running, try executing the following command (or
just browse to the url listed):

$ curl http://127.0.0.1:5000/api/note/

You should see something like the following:

{
 "meta": {
 "model": "note",
 "next": "",
 "page": 1,
 "previous": ""
 },
 "objects": [
 {
 "message": "blah blah blah this is a note",
 "id": 1,
 "created": "2011-09-23 09:07:39"
 },
 {
 "message": "this is another note!",
 "id": 2,
 "created": "2011-09-23 09:07:54"
 }
]
}

Suppose we want it to also be possible for registered users to be able to POST
messages using the API. If you try and make a POST right now, you will get a
401 response:

$ curl -i -d '' http://127.0.0.1:5000/api/note/

HTTP/1.0 401 UNAUTHORIZED
WWW-Authenticate: Basic realm="Login Required"
Content-Type: text/html; charset=utf-8
Content-Length: 21
Server: Werkzeug/0.8-dev Python/2.6.6
Date: Fri, 23 Sep 2011 14:45:38 GMT

Authentication failed

This is because we have not configured any Authentication method for
our RestAPI.

Note

The default authentication mechanism for the API only accepts GET requests.
In order to handle POST/PUT/DELETE you will need to use a subclass of the
Authentication class.

In order to allow users of the site to post notes, we will use the UserAuthentication
subclass, which requires that API requests be made with HTTP Basic auth and that the
auth credentials match those of one of the auth.User models.

from flask_peewee.rest import RestAPI, UserAuthentication

instantiate the user auth
user_auth = UserAuthentication(auth)

create a RestAPI container
api = RestAPI(app, default_auth=user_auth)

Now we can post new notes using a command-line tool like curl:

$ curl -u admin:admin -d data='{"message": "hello api"}' http://127.0.0.1:5000/api/note/

{
 "message": "hello api",
 "id": 3,
 "created": "2011-09-23 13:14:56"
}

You can see that it returns a serialized copy of the new Note object.

Note

This is just a small example of what you can do with the Rest API – refer to
the Rest API docs for more detailed information, including

	limiting access on a per-model basis

	customizing which fields are returned by the API

	filtering and querying using GET parameters

Database Wrapper

The Peewee database wrapper provides a thin layer of integration between flask
apps and the peewee orm.

The database wrapper is important because it ensures that a database connection
is created for every incoming request, and closed upon request completion. It
also provides a subclass of Model which works with the database specified
in your app’s configuration.

Most features of flask-peewee require a database wrapper, so you very likely
always create one.

The database wrapper reads its configuration from the Flask application. The
configuration requires only two arguments, but any additional arguments will
be passed to the database driver when connecting:

	name

	The name of the database to connect to (or filename if using sqlite3)

	engine

	The database driver to use, must be a subclass of peewee.Database.

from flask import Flask
from peewee import *

from flask_peewee.db import Database

DATABASE = {
 'name': 'example.db',
 'engine': 'peewee.SqliteDatabase',
}

app = Flask(__name__)
app.config.from_object(__name__) # load database configuration from this module

instantiate the db wrapper
db = Database(app)

start creating models
class Blog(db.Model):
 name = CharField()
 # .. etc

Other examples

To connect to MySQL using authentication:

DATABASE = {
 'name': 'my_database',
 'engine': 'peewee.MySQLDatabase',
 'user': 'db_user',
 'passwd': 'secret password',
}

If using a multi-threaded WSGI server:

DATABASE = {
 'name': 'foo.db',
 'engine': 'peewee.SqliteDatabase',
 'threadlocals': True,
}

Admin Interface

Many web applications ship with an “admin area”, where priveleged users can
view and modify content. By introspecting your application’s models, flask-peewee
can provide you with straightforward, easily-extensible forms for managing your
application content.

Here’s a screen-shot of the admin dashboard:

[image: _images/fp-admin.jpg]

Getting started

To get started with the admin, there are just a couple steps:

	Instantiate an Auth backend for your project – this component is responsible for providing the security for the admin area

from flask import Flask

from flask_peewee.auth import Auth
from flask_peewee.db import Database

app = Flask(__name__)
db = Database(app)

needed for authentication
auth = Auth(app, db)

	Instantiate an Admin object

continued from above...
from flask_peewee.admin import Admin

admin = Admin(app, auth)

	Register any ModelAdmin or AdminPanel objects you would like to expose via the admin

continuing... assuming "Blog" and "Entry" models
admin.register(Blog) # register "Blog" with vanilla ModelAdmin
admin.register(Entry, EntryAdmin) # register "Entry" with a custom ModelAdmin subclass

assume we have an "AdminPanel" called "NotePanel"
admin.register_panel('Notes', NotePanel)

	Call Admin.setup(), which registers the admin blueprint and configures the urls

after all models and panels are registered, configure the urls
admin.setup()

Note

For a complete example, check the Example App which ships with the project.

Customizing how models are displayed

We’ll use the “Message” model taken from the example app [https://github.com/coleifer/flask-peewee/tree/master/example],
which looks like this:

class Message(db.Model):
 user = ForeignKeyField(User)
 content = TextField()
 pub_date = DateTimeField(default=datetime.datetime.now)

 def __unicode__(self):
 return '%s: %s' % (self.user, self.content)

If we were to simply register this model with the admin, it would look something
like this:

admin = Admin(app, auth)
admin.register(Message)

admin.setup()

[image: _images/fp-message-admin.jpg]
A quick way to improve the appearance of this view is to specify which columns
to display. To start customizing how the Message model is displayed in the
admin, we’ll subclass ModelAdmin.

from flask_peewee.admin import ModelAdmin

class MessageAdmin(ModelAdmin):
 columns = ('user', 'content', 'pub_date',)

admin.register(Message, MessageAdmin)

admin.setup()

Now the admin shows all the columns and they can be clicked to sort the data:

[image: _images/fp-message-admin-2.jpg]
Suppose privacy is a big concern, and under no circumstances should a user be
able to see another user’s messages – even in the admin. This can be done by overriding
the get_query() method:

def get_query(self):
 return self.model.select().where(self.model.user == g.user)

Now a user will only be able to see and edit their own messages.

Overriding Admin Templates

Use the ModelAdmin.get_template_overrides() method to override templates
for an individual Model:

class MessageAdmin(ModelAdmin):
 columns = ('user', 'content', 'pub_date',)

 def get_template_overrides(self):
 # override the edit template with a custom one
 return {'edit': 'messages/admin/edit.html'}

admin.register(Message, MessageAdmin)

This instructs the admin to use a custom template for the edit page in the Message
admin. That template is stored in the application’s templates. It might look
something like this:

{% extends "admin/models/edit.html" %} {# override the default edit template #}

{# override any blocks here #}

There are five templates that can be overridden:

	index

	add

	edit

	delete

	export

Nicer display for Foreign Key fields

If you have a model that foreign keys to another, by default the related model
instances are displayed in a <select> input.

This can be problematic if you have a large list of models to search (causes slow
load time, hurts the database). To mitigate this pain, foreign key lookups can
be done using a paginated widget that supports type-ahead searching.

Setting this up is very easy:

class MessageAdmin(ModelAdmin):
 columns = ('user', 'content', 'pub_date',)
 foreign_key_lookups = {'user': 'username'}

When flask-peewee sees the foreign_key_lookups it will use the special modal
window to select instances. This applies to both filters and model forms:

Filters

	Select a user by clicking the “Select…” button

[image: _images/fp-admin-filter.png]

	A modal window with a paginated list and typeahead search appers:

[image: _images/fp-admin-modal.png]

	The button now indicates the selected user, clicking again will reload the dialog:

[image: _images/fp-admin-btn.png]

Admin ModelForms

The interface is the same as with the filters, except the foreign key field is
replaced by a simple button:

[image: _images/fp-admin-btn-form.png]

Creating admin panels

AdminPanel classes provide a way of extending the admin dashboard with arbitrary functionality.
These are displayed as “panels” on the admin dashboard with a customizable
template. They may additionally, however, define any views and urls. These
views will automatically be protected by the same authentication used throughout
the admin area.

Some example use-cases for AdminPanels might be:

	Display some at-a-glance functionality in the dashboard, like stats on new
user signups.

	Provide a set of views that should only be visible to site administrators,
for example a mailing-list app.

	Control global site settings, turn on and off features, etc.

Referring to the example app [https://github.com/coleifer/flask-peewee/tree/master/example],
we’ll look at a simple panel that allows administrators to leave “notes” in the admin area:

[image: _images/fp-note-panel.jpg]
[image: _images/fp-note-panel-2.jpg]
Here’s what the panel class looks like:

class NotePanel(AdminPanel):
 template_name = 'admin/notes.html'

 def get_urls(self):
 return (
 ('/create/', self.create),
)

 def create(self):
 if request.method == 'POST':
 if request.form.get('message'):
 Note.create(
 user=auth.get_logged_in_user(),
 message=request.form['message'],
)
 next = request.form.get('next') or self.dashboard_url()
 return redirect(next)

 def get_context(self):
 return {
 'note_list': Note.select().order_by(Note.created_date.desc()).limit(3)
 }

When the admin dashboard is rendered (/admin/), all panels are rendered using
the templates the specify. The template is rendered with the context provided
by the panel’s get_context method.

And the template:

{% extends "admin/panels/default.html" %}

{% block panel_content %}
 {% for note in note_list %}
 <p>{{ note.user.username }}: {{ note.message }}</p>
 {% endfor %}
 <form method="post" action="{{ url_for(panel.get_url_name('create')) }}">
 <input type="hidden" value="{{ request.url }}" />
 <p><textarea name="message"></textarea></p>
 <p><button type="submit" class="btn small">Save</button></p>
 </form>
{% endblock %}

A panel can provide as many urls and views as you like. These views will all be
protected by the same authentication as other parts of the admin area.

Handling File Uploads

Flask and wtforms both provide support for handling file uploads (on the server
and generating form fields). Peewee, however, does not have a “file field” –
generally I store a path to a file on disk and thus use a CharField for
the storage.

Here’s a very simple example of a “photo” model and a ModelAdmin that enables
file uploads.

models.py
import datetime
import os

from flask import Markup
from peewee import *
from werkzeug import secure_filename

from app import app, db

class Photo(db.Model):
 image = CharField()

 def __unicode__(self):
 return self.image

 def save_image(self, file_obj):
 self.image = secure_filename(file_obj.filename)
 full_path = os.path.join(app.config['MEDIA_ROOT'], self.image)
 file_obj.save(full_path)
 self.save()

 def url(self):
 return os.path.join(app.config['MEDIA_URL'], self.image)

 def thumb(self):
 return Markup('' % self.url())

admin.py
from flask import request
from flask_peewee.admin import Admin, ModelAdmin
from wtforms.fields import FileField, HiddenField
from wtforms.form import Form

from app import app, db
from auth import auth
from models import Photo

admin = Admin(app, auth)

class PhotoAdmin(ModelAdmin):
 columns = ['image', 'thumb']

 def get_form(self, adding=False):
 class PhotoForm(Form):
 image = HiddenField()
 image_file = FileField(u'Image file')

 return PhotoForm

 def save_model(self, instance, form, adding=False):
 instance = super(PhotoAdmin, self).save_model(instance, form, adding)
 if 'image_file' in request.files:
 file = request.files['image_file']
 instance.save_image(file)
 return instance

admin.register(Photo, PhotoAdmin)

Authentication

The Authentication class provides a means of authenticating users
of the site. It is designed to work out-of-the-box with a simple User model,
but can be heavily customized.

The Auth system is comprised of a single class which is responsible
for coordinating incoming requests to your project with known users. It provides
the following:

	views for login and logout

	model to store user data (or you can provide your own)

	mechanism for identifying users across requests (uses session storage)

All of these pieces can be customized, but the default out-of-box implementation
aims to provide a good starting place.

The auth system is also designed to work closely with the Admin Interface.

Getting started

In order to provide a method for users to authenticate with your site, instantiate
an Auth backend for your project:

from flask import Flask

from flask_peewee.auth import Auth
from flask_peewee.db import Database

app = Flask(__name__)
db = Database(app)

needed for authentication
auth = Auth(app, db)

Note

user is reserverd keyword in Postgres. Pass db_table to Auth to override db table.

Marking areas of the site as login required

If you want to mark specific areas of your site as requiring auth, you can
decorate views using the Auth.login_required() decorator:

@app.route('/private/')
@auth.login_required
def private_timeline():
 user = auth.get_logged_in_user()

 # ... display the private timeline for the logged-in user

If the request comes from someone who has not logged-in with the site, they are
redirected to the Auth.login() view, which allows the user to authenticate.
After successfully logging-in, they will be redirected to the page they requested
initially.

Retrieving the current user

Whenever in a request context [http://flask.pocoo.org/docs/reqcontext/], the
currently logged-in user is available by calling Auth.get_logged_in_user(),
which will return None if the requesting user is not logged in.

The auth system also registers a pre-request hook that stores the currently logged-in
user in the special flask variable g.

Accessing the user in the templates

The auth system registers a template context processor which makes the logged-in
user available in any template:

{% if user %}
 <p>Hello {{ user.username }}</p>
{% else %}
 <p>Please log in</p>
{% endif %}

Using a custom “User” model

It is easy to use your own model for the User, though depending on the amount
of changes it may be necessary to override methods in both the Auth and
Admin classes.

Unless you want to override the default behavior of the Auth class’ mechanism
for actually authenticating users (which you may want to do if relying on a 3rd-party
for auth) – you will want to be sure your User model implements two methods:

	set_password(password) – takes a raw password and stores an encrypted version on model

	check_password(password) – returns whether or not the supplied password matches
the one stored on the model instance

Note

The BaseUser mixin provides default implementations of these two methods.

Here’s a simple example of extending the auth system to use a custom user model:

from flask_peewee.auth import BaseUser # <-- implements set_password and check_password

app = Flask(__name__)
db = Database(app)

create our custom user model. note that we're mixing in BaseUser in order to
use the default auth methods it implements, "set_password" and "check_password"
class User(db.Model, BaseUser):
 username = CharField()
 password = CharField()
 email = CharField()

 # ... our custom fields ...
 is_superuser = BooleanField()

create a modeladmin for it
class UserAdmin(ModelAdmin):
 columns = ('username', 'email', 'is_superuser',)

 # Make sure the user's password is hashed, after it's been changed in
 # the admin interface. If we don't do this, the password will be saved
 # in clear text inside the database and login will be impossible.
 def save_model(self, instance, form, adding=False):
 orig_password = instance.password

 user = super(UserAdmin, self).save_model(instance, form, adding)

 if orig_password != form.password.data:
 user.set_password(form.password.data)
 user.save()

 return user

subclass Auth so we can return our custom classes
class CustomAuth(Auth):
 def get_user_model(self):
 return User

 def get_model_admin(self):
 return UserAdmin

instantiate the auth
auth = CustomAuth(app, db)

Here’s how you might integrate the custom auth with the admin area of your site:

subclass Admin to check for whether the user is a superuser
class CustomAdmin(Admin):
 def check_user_permission(self, user):
 return user.is_superuser

instantiate the admin
admin = CustomAdmin(app, auth)

admin.register(User, UserAdmin)
admin.setup()

REST Api

flask-peewee comes with some tools for exposing your project’s models via a
RESTful API. There are several components to the rest module, but the basic
setup is to create an instance of RestAPI and then register your
project’s models with subclasses of RestResource.

Each RestResource you expose via the API will support, by default,
the following:

	/api/<model name>/ – GET and POST requests

	/api/<model name>/<primary key>/ – GET, PUT and DELETE requests

Also, you can filter results by columns on the model using django-style syntax,
for example:

	/api/blog/?name=Some%20Blog

	/api/blog/?author__username=some_blogger

Getting started with the API

In this documentation we’ll start with a very simple API and build it out. The
complete version of this API is included in the example-app, so feel free
to refer there.

The project will be a simple ‘twitter-like’ app where users can post short messages
and “follow” other users.

Note

If you’re using apache with mod_wsgi and would like to use any of
the auth backends that use basic auth, you will need to add the following
directive: WSGIPassAuthorization On

Project models

There are three main models - User, Relationship and Message - which
we will expose via the API. Here is a truncated version of what they look like:

from flask_peewee.auth import BaseUser

class User(db.Model, BaseUser):
 username = CharField()
 password = CharField()
 email = CharField()
 join_date = DateTimeField(default=datetime.datetime.now)
 active = BooleanField(default=True)
 admin = BooleanField(default=False)

class Relationship(db.Model):
 from_user = ForeignKeyField(User, related_name='relationships')
 to_user = ForeignKeyField(User, related_name='related_to')

class Message(db.Model):
 user = ForeignKeyField(User)
 content = TextField()
 pub_date = DateTimeField(default=datetime.datetime.now)

Creating a RestAPI

The RestAPI acts as a container for the various RestResource
objects we will expose. By default it binds all resources to /api/<model-name>/.

Here we’ll create a simple api and register our models:

from flask_peewee.rest import RestAPI

from app import app # our project's Flask app

instantiate our api wrapper
api = RestAPI(app)

register our models so they are exposed via /api/<model>/
api.register(User)
api.register(Relationship)
api.register(Message)

configure the urls
api.setup()

Now if we hit our project at /api/message/ we should get something like the following:

{
 "meta": {
 "model": "message",
 "next": "",
 "page": 1,
 "previous": ""
 },
 "objects": [
 {
 "content": "flask and peewee, together at last!",
 "pub_date": "2011-09-16 18:36:15",
 "user_id": 1,
 "id": 1
 },
 {
 "content": "Hey, I'm just some user",
 "pub_date": "2011-09-16 18:46:59",
 "user_id": 2,
 "id": 2
 }
]
}

Say we’re interested in the first message, we can hit /api/message/1/ to view
just the details on that object:

{
 content: "flask and peewee, together at last!"
 pub_date: "2011-09-16 18:36:15"
 user_id: 1
 id: 1
}

Customizing what is returned

If you access the User API endpoint, we quickly notice a problem:

$ curl http://127.0.0.1:5000/api/user/

{
 "meta": {
 "model": "user",
 "next": "",
 "page": 1,
 "previous": ""
 },
 "objects": [
 {
 "username": "admin",
 "admin": true,
 "email": "",
 "join_date": "2011-09-16 18:34:49",
 "active": true,
 "password": "d033e22ae348aeb5660fc2140aec35850c4da997",
 "id": 1
 },
 {
 "username": "coleifer",
 "admin": false,
 "email": "coleifer@gmail.com",
 "join_date": "2011-09-16 18:35:56",
 "active": true,
 "password": "a94a8fe5ccb19ba61c4c0873d391e987982fbbd3",
 "id": 2
 }
]
}

Passwords and email addresses are being exposed. In order to exclude these fields
from serialization, subclass RestResource:

from flask_peewee.rest import RestAPI, RestResource

from app import app # our project's Flask app

instantiate our api wrapper
api = RestAPI(app)

create a special resource for users that excludes email and password
class UserResource(RestResource):
 exclude = ('password', 'email',)

register our models so they are exposed via /api/<model>/
api.register(User, UserResource) # specify the UserResource
api.register(Relationship)
api.register(Message)

Now emails and passwords are no longer returned by the API.

Allowing users to post objects

What if we want to create new messages via the Api? Or modify/delete existing messages?

$ curl -i -d '' http://127.0.0.1:5000/api/message/

HTTP/1.0 401 UNAUTHORIZED
WWW-Authenticate: Basic realm="Login Required"
Content-Type: text/html; charset=utf-8
Content-Length: 21
Server: Werkzeug/0.8-dev Python/2.6.6
Date: Thu, 22 Sep 2011 16:14:21 GMT

Authentication failed

The authentication failed because the default authentication mechanism only
allows read-only access.

In order to allow users to create messages via the API, we need to use a subclass
of Authentication that allows POST requests. We also want to ensure
that the requesting user is a member of the site.

For this we will use the UserAuthentication class as the default auth
mechanism.

from auth import auth # import the Auth object used by our project

from flask_peewee.rest import RestAPI, RestResource, UserAuthentication

create an instance of UserAuthentication
user_auth = UserAuthentication(auth)

instantiate our api wrapper, specifying user_auth as the default
api = RestAPI(app, default_auth=user_auth)

create a special resource for users that excludes email and password
class UserResource(RestResource):
 exclude = ('password', 'email',)

register our models so they are exposed via /api/<model>/
api.register(User, UserResource) # specify the UserResource
api.register(Relationship)
api.register(Message)

configure the urls
api.setup()

Now we should be able to POST new messages.

import json
import httplib2

sock = httplib2.Http()
sock.add_credentials('admin', 'admin') # use basic auth

message = {'user_id': 1, 'content': 'hello api'}
msg_json = json.dumps(message)

headers, resp = sock.request('http://localhost:5000/api/message/', 'POST', body=msg_json)

response = json.loads(resp)

The response object will look something like this:

{
 'content': 'hello api',
 'user_id': 1,
 'pub_date': '2011-09-22 11:25:02',
 'id': 3
}

There is a problem with this, however. Notice how the user_id was passed in
with the POST data? This effectively will let a user post a message as another user.
It also means a user can use PUT requests to modify another user’s message:

continued from above script
update = {'content': 'haxed you, bro'}
update_json = json.dumps(update)

headers, resp = sock.request('http://127.0.0.1:5000/api/message/2/', 'PUT', body=update_json)

response = json.loads(resp)

The response will look like this:

{
 'content': 'haxed you, bro',
 'pub_date': '2011-09-16 18:36:15',
 'user_id': 2,
 'id': 2
}

This is a problem – we need a way of ensuring that users can only edit their
own messages. Furthermore, when they create messages we need to make sure the
message is assigned to them.

Restricting API access on a per-model basis

flask-peewee comes with a special subclass of RestResource that
restricts POST/PUT/DELETE requests to prevent users from modifying another user’s
content.

from flask_peewee.rest import RestrictOwnerResource

class MessageResource(RestrictOwnerResource):
 owner_field = 'user'

api.register(Message, MessageResource)

Now, if we try and modify the message, we get a 403 Forbidden:

headers, resp = sock.request('http://127.0.0.1:5000/api/message/2/', 'PUT', body=update_json)
print headers['status']

prints 403

It is fine to modify our own message, though (message with id=1):

headers, resp = sock.request('http://127.0.0.1:5000/api/message/1/', 'PUT', body=update_json)
print headers['status']

prints 200

Under-the-hood, the implementation [https://github.com/coleifer/flask-peewee/blob/master/flask_peewee/rest.py#L284] of the RestrictOwnerResource is pretty simple.

	PUT / DELETE – verify the authenticated user is the owner of the object

	POST – assign the authenticated user as the owner of the new object

Locking down a resource

Suppose we want to restrict normal users from modifying User resources. For this
we can use a special subclass of UserAuthentication that restricts access
to administrators:

from flask_peewee.rest import AdminAuthentication

instantiate our user-based auth
user_auth = UserAuthentication(auth)

instantiate admin-only auth
admin_auth = AdminAuthentication(auth)

instantiate our api wrapper, specifying user_auth as the default
api = RestAPI(app, default_auth=user_auth)

register the UserResource with admin auth
api.register(User, UserResource, auth=admin_auth)

Filtering records and querying

A REST Api is not very useful if it cannot be queried in a meaningful fashion. To
this end, the flask-peewee RestResource objects support “django-style”
filtering:

$ curl http://127.0.0.1:5000/api/message/?user=2

This call will return only messages by the User with id=2:

{
 "meta": {
 "model": "message",
 "next": "",
 "page": 1,
 "previous": ""
 },
 "objects": [
 {
 "content": "haxed you, bro",
 "pub_date": "2011-09-16 18:36:15",
 "user_id": 2,
 "id": 2
 }
]
}

Joins can be traversed using the django double-underscore notation:

$ curl http://127.0.0.1:5000/api/message/?user__username=admin

{
 "meta": {
 "model": "message",
 "next": "",
 "page": 1,
 "previous": ""
 },
 "objects": [
 {
 "content": "flask and peewee, together at last!",
 "pub_date": "2011-09-16 18:36:15",
 "user_id": 1,
 "id": 1
 },
 {
 "content": "hello api",
 "pub_date": "2011-09-22 11:25:02",
 "user_id": 1,
 "id": 3
 }
]
}

It is also supported to use different comparison operators with the same double-underscore notation:

$ curl http://127.0.0.1:5000/api/user/?user__lt=2

{
 "meta": {
 "model": "user",
 "next": "",
 "page": 1,
 "previous": ""
 },
"objects": [{
 "username": "admin",
 "admin": true,
 "email": "admin@admin",
 "active": true,
 "password": "214de$25",
 "id": 1
 }]
}

	Valid Comparison Operators are:

	‘eq’, ‘lt’, ‘lte’, ‘gt’, ‘gte’, ‘ne’, ‘in’, ‘is’, ‘like’, ‘ilike’

Sorting results

Results can be sorted by specifying an ordering as a GET argument. The ordering
must be a column on the model.

/api/message/?ordering=pub_date

If you would like to order objects “descending”, place a “-” (hyphen character) before the column name:

/api/message/?ordering=-pub_date

Limiting results and pagination

By default, resources are paginated 20 per-page. If you want to return less, you
can specify a limit in the querystring.

/api/message/?limit=2

In the “meta” section of the response, URIs for the “next” and “previous” sets
of results are available:

meta: {
 model: "message"
 next: "/api/message/?limit=1&page=3"
 page: 2
 previous: "/api/message/?limit=1&page=1"
}

Utilities

flask-peewee ships with several useful utilities. If you’re coming from the
django world, some of these functions may look familiar to you.

Getting objects

get_object_or_404()

Provides a handy way of getting an object or 404ing if not found, useful
for urls that match based on ID.

@app.route('/blog/<title>/')
def blog_detail(title):
 blog = get_object_or_404(Blog.select().where(Blog.active==True), Blog.title==title)
 return render_template('blog/detail.html', blog=blog)

object_list()

Wraps the given query and handles pagination automatically. Pagination defaults to 20
but can be changed by passing in paginate_by=XX.

@app.route('/blog/')
def blog_list():
 active = Blog.select().where(Blog.active==True)
 return object_list('blog/index.html', active)

<!-- template -->
{% for blog in object_list %}
 {# render the blog here #}
{% endfor %}

{% if page > 1 %}
 Prev
{% endif %}
{% if page < pagination.get_pages() %}
 Next
{% endif %}

PaginatedQuery

A wrapper around a query (or model class) that handles pagination.

Example:

query = Blog.select().where(Blog.active==True)
pq = PaginatedQuery(query)

assume url was /?page=3
obj_list = pq.get_list() # returns 3rd page of results

pq.get_page() # returns "3"

pq.get_pages() # returns total objects / objects-per-page

Misc

	
slugify(string)

	Convert a string into something suitable for use as part of a URL,
e.g. “This is a url” becomes “this-is-a-url”

from flask_peewee.utils import slugify

class Blog(db.Model):
 title = CharField()
 slug = CharField()

 def save(self, *args, **kwargs):
 self.slug = slugify(self.title)
 super(Blog, self).save(*args, **kwargs)

	
make_password(raw_password)

	Create a salted hash for the given plain-text password

	
check_password(raw_password, enc_password)

	Compare a plain-text password against a salted/hashed password

Using gevent

If you would like to serve your flask application using gevent, there are two small
settings you will need to add.

Database configuration

Instruct peewee to store connection information in a thread local:

app configuration
DATABASE = {
 'name': 'my_db',
 'engine': 'peewee.PostgresqlDatabase',
 'user': 'postgres',
 'threadlocals': True, # <-- this
}

Monkey-patch the thread module

Some time before instantiating a Database object (and preferrably at
the very “beginning” of your code) you will want to monkey-patch [http://www.gevent.org/gevent.monkey.html]
the standard library thread module:

from gevent import monkey; monkey.patch_thread()

If you want to patch everything (recommended):

from gevent import monkey; monkey.patch_all()

Note

Remember to monkey-patch before initializing your app

Rationale

flask-peewee opens a connection-per-request. Flask stores things, like “per-request”
information, in a special object called a context local [http://flask.pocoo.org/docs/reqcontext/].
Flask will ensure that this works even in a greened environment. Peewee does not
automatically work in a “greened” environment, and stores connection state on the
database instance in a local. Peewee can use a thread local instead, which ensures
connections are not shared across threads. When using peewee with gevent, it is
necessary to make this “threadlocal” a “greenlet local” by monkeypatching the thread module.

API

Admin

	
class Admin(app, auth[, blueprint_factory[, template_helper[, prefix]]])

	Class used to expose an admin area at a certain url in your application. The
Admin object implements a flask blueprint and acts as the central registry
for models and panels you wish to expose in the admin.

The Admin object coordinates the registration of models and panels and provides
a method for ensuring a user has permission to access the admin area.

The Admin object requires an Auth instance when being instantiated,
which in turn requires a Flask app and a py:class:Database wrapper.

Here is an example of how you might instantiate an Admin object:

from flask import Flask

from flask_peewee.admin import Admin
from flask_peewee.auth import Auth
from flask_peewee.db import Database

app = Flask(__name__)
db = Database(app)

needed for authentication
auth = Auth(app, db)

instantiate the Admin object for our project
admin = Admin(app, auth)

	Parameters

	
	app – flask application to bind admin to

	auth – Auth instance which will provide authentication

	blueprint_factory – an object that will create the BluePrint used by the admin

	template_helper – a subclass of AdminTemplateHelper that provides helpers
and context to used by the admin templates

	prefix – url to bind admin to, defaults to /admin

	
register(model[, admin_class=ModelAdmin])

	Register a model to expose in the admin area. A ModelAdmin
subclass can be provided along with the model, allowing for customization
of the model’s display and behavior.

Example usage:

will use the default ModelAdmin subclass to display model
admin.register(BlogModel)

class EntryAdmin(ModelAdmin):
 columns = ('title', 'blog', 'pub_date',)

admin.register(EntryModel, EntryAdmin)

Warning

All models must be registered before calling setup()

	Parameters

	
	model – peewee model to expose via the admin

	admin_class – ModelAdmin or subclass to use with given model

	
register_panel(title, panel)

	Register a AdminPanel subclass for display in the admin dashboard.

Example usage:

class HelloWorldPanel(AdminPanel):
 template_name = 'admin/panels/hello.html'

 def get_context(self):
 return {
 'message': 'Hello world',
 }

admin.register_panel('Hello world', HelloWorldPanel)

Warning

All panels must be registered before calling setup()

	Parameters

	
	title – identifier for panel, example might be “Site Stats”

	panel – subclass of AdminPanel to display

	
setup()

	Configures urls for models and panels, then registers blueprint with the
Flask application. Use this method when you have finished registering
all the models and panels with the admin object, but before starting
the WSGI application. For a sample implementation, check out example/main.py
in the example application supplied with flask-peewee.

register all models, etc
admin.register(...)

finish up initialization of the admin object
admin.setup()

if __name__ == '__main__':
 # run the WSGI application
 app.run()

Note

call setup() after registering your models and panels

	
check_user_permission(user)

	Check whether the given user has permission to access to the admin area. The
default implementation simply checks whether the admin field is checked,
but you can provide your own logic.

This method simply controls access to the admin area as a whole. In the
event the user is not permitted to access the admin (this function
returns False), they will receive a HTTP Response Forbidden (403).

Default implementation:

def check_user_permission(self, user):
 return user.admin

	Parameters

	user – the currently logged-in user, exposed by the Auth instance

	Return type

	Boolean

	
auth_required(func)

	Decorator that ensures the requesting user has permission. The implementation
first checks whether the requesting user is logged in, and if not redirects
to the login view. If the user is logged in, it calls check_user_permission().
Only if this call returns True is the actual view function called.

	
get_urls()

	Get a tuple of 2-tuples mapping urls to view functions that will be
exposed by the admin. The default implementation looks like this:

def get_urls(self):
 return (
 ('/', self.auth_required(self.index)),
)

This method provides an extension point for providing any additional
“global” urls you would like to expose.

Note

Remember to decorate any additional urls you might add
with auth_required() to ensure they are not accessible
by unauthenticated users.

Exposing Models with the ModelAdmin

	
class ModelAdmin

	Class that determines how a peewee Model is exposed in the admin area. Provides
a way of encapsulating model-specific configuration and behaviors. Provided
when registering a model with the Admin instance (see Admin.register()).

	
columns

	List or tuple of columns should be displayed in the list index. By default if no
columns are specified the Model’s __unicode__() will be used.

Note

Valid values for columns are the following:

	field on a model

	attribute on a model instance

	callable on a model instance (called with no parameters)

If a column is a model field, it will be sortable.

class EntryAdmin(ModelAdmin):
 columns = ['title', 'pub_date', 'blog']

	
filter_exclude

	Exclude certain fields from being exposed as filters. Related fields can
be excluded using “__” notation, e.g. user__password

	
filter_fields

	Only allow filtering on the given fields

	
exclude

	A list of field names to exclude from the “add” and “edit” forms

	
fields

	Only display the given fields on the “add” and “edit” form

	
paginate_by = 20

	Number of records to display on index pages

	
filter_paginate_by = 15

	Default pagination when filtering in a modal dialog

	
delete_collect_objects = True

	Collect and display a list of “dependencies” when deleting

	
delete_recursive = True

	Delete “dependencies” recursively

	
get_query()

	Determines the list of objects that will be exposed in the admin. By
default this will be all objects, but you can use this method to further
restrict the query.

This method is called within the context of a request, so you can access
the Flask.request object or use the Auth instance to
determine the currently-logged-in user.

Here’s an example showing how the query is restricted based on whether
the given user is a “super user” or not:

class UserAdmin(ModelAdmin):
 def get_query():
 # ask the auth system for the currently logged-in user
 current_user = self.auth.get_logged_in_user()

 # if they are not a superuser, only show them their own
 # account in the admin
 if not current_user.is_superuser:
 return User.select().where(User.id==current_user.id)

 # otherwise, show them all users
 return User.select()

	Return type

	A SelectQuery that represents the list of objects to expose

	
get_object(pk)

	This method retrieves the object matching the given primary key. The
implementation uses get_query() to retrieve the
base list of objects, then queries within that for the given primary key.

	Return type

	The model instance with the given pk, raising a DoesNotExist
in the event the model instance does not exist.

	
get_form([adding=False])

	Provides a useful extension point in the event you want to define custom
fields or custom validation behavior.

	Parameters

	adding (boolean) – indicates whether adding a new instance or editing existing

	Return type

	A wtf-peewee [http://github.com/coleifer/wtf-peewee] Form subclass that
will be used when adding or editing model instances in the admin.

	
get_add_form()

	Allows you to specify a different form when adding new instances versus
editing existing instances. The default implementation simply calls
get_form().

	
get_edit_form()

	Allows you to specify a different form when editing existing instances versus
adding new instances. The default implementation simply calls
get_form().

	
get_filter_form()

	Provide a special form for use when filtering the list of objects in the model admin’s
index/export views. This form is slightly different in that it is tailored for use
when filtering the list of models.

	Return type

	A special Form instance (FilterForm) that will be used
when filtering the list of objects in the index view.

	
save_model(instance, form, adding=False)

	Method responsible for persisting changes to the database. Called by both
the add and the edit views.

Here is an example from the default auth.User ModelAdmin,
in which the password is displayed as a sha1, but if the user is adding
or edits the existing password, it re-hashes:

def save_model(self, instance, form, adding=False):
 orig_password = instance.password

 user = super(UserAdmin, self).save_model(instance, form, adding)

 if orig_password != form.password.data:
 user.set_password(form.password.data)
 user.save()

 return user

	Parameters

	
	instance – an unsaved model instance

	form – a validated form instance

	adding – boolean to indicate whether we are adding a new instance
or saving an existing

	
get_template_overrides()

	Hook for specifying template overrides. Should return a dictionary containing
view names as keys and template names as values. Possible choices for keys are:

	index

	add

	edit

	delete

	export

class UserModelAdmin(ModelAdmin):
 def get_template_overrides(self):
 return {'index': 'users/admin/index_override.html'}

	
get_urls()

	Useful as a hook for extending ModelAdmin functionality
with additional urls.

Note

It is not necessary to decorate the views specified by this method
since the Admin instance will handle this during registration
and setup.

	Return type

	tuple of 2-tuples consisting of a mapping between url and view

	
get_url_name(name)

	Since urls are namespaced, this function provides an easy way to get
full urls to views provided by this ModelAdmin

	
process_filters(query)

	Applies any filters specified by the user to the given query, returning
metadata about the filters.

Returns a 4-tuple containing:

	special Form instance containing fields for filtering

	filtered query

	a list containing the currently selected filters

	a tree-structure containing the fields available for filtering (FieldTreeNode)

	Return type

	A tuple as described above

Extending admin functionality using AdminPanel

	
class AdminPanel

	Class that provides a simple interface for providing arbitrary extensions to
the admin. These are displayed as “panels” on the admin dashboard with a customizable
template. They may additionally, however, define any views and urls. These
views will automatically be protected by the same authentication used throughout
the admin area.

Some example use-cases for AdminPanels might be:

	Display some at-a-glance functionality in the dashboard, like stats on new
user signups.

	Provide a set of views that should only be visible to site administrators,
for example a mailing-list app.

	Control global site settings, turn on and off features, etc.

	
template_name

	What template to use to render the panel in the admin dashboard, defaults
to 'admin/panels/default.html'.

	
get_urls()

	Useful as a hook for extending AdminPanel functionality
with custom urls and views.

Note

It is not necessary to decorate the views specified by this method
since the Admin instance will handle this during registration
and setup.

	Return type

	Returns a tuple of 2-tuples mapping url to view

	
get_url_name(name)

	Since urls are namespaced, this function provides an easy way to get
full urls to views provided by this panel

	Parameters

	name – string representation of the view function whose url you want

	Return type

	String representing url

<!-- taken from example -->
<!-- will return something like /admin/notes/create/ -->
{{ url_for(panel.get_url_name('create')) }}

	
get_template_name()

	Return the template used to render this panel in the dashboard. By default
simply returns the template stored under AdminPanel.template_name.

	
get_context()

	Return the context to be used when rendering the dashboard template.

	Return type

	Dictionary

	
render()

	Render the panel template with the context – this is what gets displayed
in the admin dashboard.

Auth

	
class Auth(app, db, [user_model=None, [prefix='/accounts',]]db_table='user')

	The class that provides methods for authenticating users and tracking
users across requests. It also provides a model for persisting users to
the database, though this can be customized.

The auth framework is used by the Admin and can also be integrated
with the RestAPI.

Here is an example of how to use the Auth framework:

from flask import Flask

from flask_peewee.auth import Auth
from flask_peewee.db import Database

app = Flask(__name__)
db = Database(app)

needed for authentication
auth = Auth(app, db)

mark a view as requiring login
@app.route('/private/')
@auth.login_required
def private_timeline():
 # get the currently-logged-in user
 user = auth.get_logged_in_user()

Unlike the Admin or the RestAPI, there is no explicit
setup() method call when using the Auth system. Creation of the auth
blueprint and registration with the Flask app happen automatically during
instantiation.

Note

A context processor is automatically registered that provides
the currently logged-in user across all templates, available as “user”.
If no user is logged in, the value of this will be None.

Note

A pre-request handler is automatically registered which attempts
to retrieve the current logged-in user and store it on the global flask
variable g.

	Parameters

	
	app – flask application to bind admin to

	db – Database database wrapper for flask app

	user_model – User model to use

	prefix – url to bind authentication views to, defaults to /accounts/

	db_table – Create db table using db_table name. user is reserved keyword in postgres.

	
default_next_url = 'homepage'

	The url to redirect to upon successful login in the event a ?next=<xxx>
is not provided.

	
get_logged_in_user()

	
Note

Since this method relies on the session storage to
track users across requests, this method must be called while
within a RequestContext.

	Return type

	returns the currently logged-in User, or None if session is anonymous

	
login_required(func)

	Function decorator that ensures a view is only accessible by authenticated
users. If the user is not authed they are redirected to the login view.

Note

this decorator should be applied closest to the original view function

@app.route('/private/')
@auth.login_required
def private():
 # this view is only accessible by logged-in users
 return render_template('private.html')

	Parameters

	func – a view function to be marked as login-required

	Return type

	if the user is logged in, return the view as normal, otherwise
returns a redirect to the login page

	
get_user_model()

	
	Return type

	Peewee model to use for persisting user data and authentication

	
get_model_admin([model_admin=None])

	Provide a ModelAdmin class suitable for use with the User
model. Specifically addresses the need to re-hash passwords when changing
them via the admin.

The default implementation includes an override of the ModelAdmin.save_model()
method to intelligently hash passwords:

class UserAdmin(model_admin):
 columns = ['username', 'email', 'active', 'admin']

 def save_model(self, instance, form, adding=False):
 orig_password = instance.password

 user = super(UserAdmin, self).save_model(instance, form, adding)

 if orig_password != form.password.data:
 user.set_password(form.password.data)
 user.save()

 return user

	Parameters

	model_admin – subclass of ModelAdmin to use as the base class

	Return type

	a subclass of ModelAdmin suitable for use with the User model

	
get_urls()

	A mapping of url to view. The default implementation provides views for
login and logout only, but you might extend this to add registration and
password change views.

Default implementation:

def get_urls(self):
 return (
 ('/logout/', self.logout),
 ('/login/', self.login),
)

	Return type

	a tuple of 2-tuples mapping url to view function.

	
get_login_form()

	
	Return type

	a wtforms.Form subclass to use for retrieving any user info required for login

	
authenticate(username, password)

	Given the username and password, retrieve the user with the matching
credentials if they exist. No exceptions should be raised by this method.

	Return type

	User model if successful, otherwise False

	
login_user(user)

	Mark the given user as “logged-in”. In the default implementation, this
entails storing data in the Session to indicate the successful login.

	Parameters

	user – User instance

	
logout_user(user)

	Mark the requesting user as logged-out

	Parameters

	user – User instance

The BaseUser mixin

	
class BaseUser

	Provides default implementations for password hashing and validation. The
auth framework requires two methods be implemented by the User model. A
default implementation of these methods is provided by the BaseUser mixin.

	
set_password(password)

	Encrypts the given password and stores the encrypted version on the model.
This method is useful when registering a new user and storing the password,
or modifying the password when a user elects to change.

	
check_password(password)

	Verifies if the given plaintext password matches the encrypted version stored
on the model. This method on the User model is called specifically by
the Auth.authenticate() method.

	Return type

	Boolean

Database

	
class Database(app)

	The database wrapper provides integration between the peewee ORM and flask.
It reads database configuration information from the flask app configuration
and manages connections across requests.

The db wrapper also provides a Model subclass which is configured to work
with the database specified by the application’s config.

To configure the database specify a database engine and name:

DATABASE = {
 'name': 'example.db',
 'engine': 'peewee.SqliteDatabase',
}

Here is an example of how you might use the database wrapper:

instantiate the db wrapper
db = Database(app)

start creating models
class Blog(db.Model):
 # this model will automatically work with the database specified
 # in the application's config.

	Parameters

	app – flask application to bind admin to

	
Model

	Model subclass that works with the database specified by the app’s config

REST API

	
class RestAPI(app[, prefix='/api'[, default_auth=None[, name='api']]])

	The RestAPI acts as a container for the various RestResource
objects. By default it binds all resources to /api/<model-name>/. Much like
the Admin, it is a centralized registry of resources.

Example of creating a RestAPI instance for a flask app:

from flask_peewee.rest import RestAPI

from app import app # our project's Flask app

instantiate our api wrapper
api = RestAPI(app)

register a model with the API
api.register(SomeModel)

configure URLs
api.setup()

Note

Like the flask admin, the RestAPI has a setup() method which
must be called after all resources have been registered.

	Parameters

	
	app – flask application to bind API to

	prefix – url to serve REST API from

	default_auth – default Authentication type to use with registered resources

	name – the name for the API blueprint

	
register(model[, provider=RestResource[, auth=None[, allowed_methods=None]]])

	Register a model to expose via the API.

	Parameters

	
	model – Model to expose via API

	provider – subclass of RestResource to use for this model

	auth – authentication type to use for this resource, falling back to RestAPI.default_auth

	allowed_methods – list of HTTP verbs to allow, defaults to ['GET', 'POST', 'PUT', 'DELETE']

	
setup()

	Register the API BluePrint and configure urls.

Warning

This must be called after registering your resources.

RESTful Resources and their subclasses

	
class RestResource(rest_api, model, authentication[, allowed_methods=None])

	Class that determines how a peewee Model is exposed by the Rest API. Provides
a way of encapsulating model-specific configuration and behaviors. Provided
when registering a model with the RestAPI instance (see RestAPI.register()).

Should not be instantiated directly in most cases. Instead should be “registered” with
a RestAPI instance.

Example usage:

instantiate our api wrapper, passing in a reference to the Flask app
api = RestAPI(app)

create a RestResource subclass
class UserResource(RestResource):
 exclude = ('password', 'email',)

assume we have a "User" model, register it with the custom resource
api.register(User, UserResource)

	
paginate_by = 20

	Determines how many results to return for a given API query.

Note

Fewer results can be requested by specifying a limit,
but paginate_by is the upper bound.

	
fields = None

	A list or tuple of fields to expose when serializing

	
exclude = None

	A list or tuple of fields to not expose when serializing

	
filter_exclude

	A list of fields that cannot be used to filter API results

	
filter_fields

	A list of fields that can be used to filter the API results

	
filter_recursive = True

	Allow filtering on related resources

	
include_resources

	A mapping of field name to resource class for handling of foreign-keys.
When provided, foreign keys will be “nested”.

class UserResource(RestResource):
 exclude = ('password', 'email')

class MessageResource(RestResource):
 include_resources = {'user': UserResource} # 'user' is a foreign key field

/* messages without "include_resources" */
{
 "content": "flask and peewee, together at last!",
 "pub_date": "2011-09-16 18:36:15",
 "id": 1,
 "user": 2
},

/* messages with "include_resources = {'user': UserResource} */
{
 "content": "flask and peewee, together at last!",
 "pub_date": "2011-09-16 18:36:15",
 "id": 1,
 "user": {
 "username": "coleifer",
 "active": true,
 "join_date": "2011-09-16 18:35:56",
 "admin": false,
 "id": 2
 }
}

	
delete_recursive = True

	Recursively delete dependencies

	
get_query()

	Returns the list of objects to be exposed by the API. Provides an easy
hook for restricting objects:

class UserResource(RestResource):
 def get_query(self):
 # only return "active" users
 return self.model.select().where(active=True)

	Return type

	a SelectQuery containing the model instances to expose

	
prepare_data(obj, data)

	This method provides a hook for modifying outgoing data. The default
implementation no-ops, but you could do any kind of munging here. The
data returned by this method is passed to the serializer before being
returned as a json response.

	Parameters

	
	obj – the object being serialized

	data – the dictionary representation of a model returned by the Serializer

	Return type

	a dictionary of data to hand off

	
save_object(instance, raw_data)

	Persist the instance to the database. The raw data supplied by the request
is also available, but at the time this method is called the instance has
already been updated and populated with the incoming data.

	Parameters

	
	instance – Model instance that has already been updated with the incoming raw_data

	raw_data – data provided in the request

	Return type

	a saved instance

	
api_list()

	A view that dispatches based on the HTTP verb to either:

	GET: object_list()

	POST: create()

	Return type

	Response

	
api_detail(pk)

	A view that dispatches based on the HTTP verb to either:

	GET: object_detail()

	PUT: edit()

	DELETE: delete()

	Return type

	Response

	
object_list()

	Returns a serialized list of Model instances. These objects may be
filtered, ordered, and/or paginated.

	Return type

	Response

	
object_detail()

	Returns a serialized Model instance.

	Return type

	Response

	
create()

	Creates a new Model instance based on the deserialized POST body.

	Return type

	Response containing serialized new object

	
edit()

	Edits an existing Model instance, updating it with the deserialized PUT body.

	Return type

	Response containing serialized edited object

	
delete()

	Deletes an existing Model instance from the database.

	Return type

	Response indicating number of objects deleted, i.e. {'deleted': 1}

	
get_api_name()

	
	Return type

	URL-friendly name to expose this resource as, defaults to the model’s name

	
check_get([obj=None])

	A hook for pre-authorizing a GET request. By default returns True.

	Return type

	Boolean indicating whether to allow the request to continue

	
check_post()

	A hook for pre-authorizing a POST request. By default returns True.

	Return type

	Boolean indicating whether to allow the request to continue

	
check_put(obj)

	A hook for pre-authorizing a PUT request. By default returns True.

	Return type

	Boolean indicating whether to allow the request to continue

	
check_delete(obj)

	A hook for pre-authorizing a DELETE request. By default returns True.

	Return type

	Boolean indicating whether to allow the request to continue

	
class RestrictOwnerResource(RestResource)

	This subclass of RestResource allows only the “owner” of an object
to make changes via the API. It works by verifying that the authenticated user
matches the “owner” of the model instance, which is specified by setting owner_field.

Additionally, it sets the “owner” to the authenticated user whenever saving
or creating new instances.

	
owner_field = 'user'

	Field on the model to use to verify ownership of the given instance.

	
validate_owner(user, obj)

	
	Parameters

	
	user – an authenticated User instance

	obj – the Model instance being accessed via the API

	Return type

	Boolean indicating whether the user can modify the object

	
set_owner(obj, user)

	Mark the object as being owned by the provided user. The default implementation
simply calls setattr.

	Parameters

	
	obj – the Model instance being accessed via the API

	user – an authenticated User instance

Authenticating requests to the API

	
class Authentication([protected_methods=None])

	Not to be confused with the auth.Authentication class, this class provides
a single method, authorize, which is used to determine whether to allow
a given request to the API.

	Parameters

	protected_methods – A list or tuple of HTTP verbs to require auth for

	
authorize()

	This single method is called per-API-request.

	Return type

	Boolean indicating whether to allow the given request through or not

	
class UserAuthentication(auth[, protected_methods=None])

	Authenticates API requests by requiring the requesting user be a registered
auth.User. Credentials are supplied using HTTP basic auth.

Example usage:

from auth import auth # import the Auth object used by our project

from flask_peewee.rest import RestAPI, RestResource, UserAuthentication

create an instance of UserAuthentication
user_auth = UserAuthentication(auth)

instantiate our api wrapper, specifying user_auth as the default
api = RestAPI(app, default_auth=user_auth)

create a special resource for users that excludes email and password
class UserResource(RestResource):
 exclude = ('password', 'email',)

register our models so they are exposed via /api/<model>/
api.register(User, UserResource) # specify the UserResource

configure the urls
api.setup()

	Parameters

	
	auth – an Authentication instance

	protected_methods – A list or tuple of HTTP verbs to require auth for

	
authorize()

	Verifies, using HTTP Basic auth, that the username and password match a
valid auth.User model before allowing the request to continue.

	Return type

	Boolean indicating whether to allow the given request through or not

	
class AdminAuthentication(auth[, protected_methods=None])

	Subclass of the UserAuthentication that further restricts which
users are allowed through. The default implementation checks whether the
requesting user is an “admin” by checking whether the admin attribute is set
to True.

Example usage:

Authenticates API requests by requiring the requesting user be a registered
auth.User. Credentials are supplied using HTTP basic auth.

Example usage:

from auth import auth # import the Auth object used by our project

from flask_peewee.rest import RestAPI, RestResource, UserAuthentication, AdminAuthentication

create an instance of UserAuthentication and AdminAuthentication
user_auth = UserAuthentication(auth)
admin_auth = AdminAuthentication(auth)

instantiate our api wrapper, specifying user_auth as the default
api = RestAPI(app, default_auth=user_auth)

create a special resource for users that excludes email and password
class UserResource(RestResource):
 exclude = ('password', 'email',)

register our models so they are exposed via /api/<model>/
api.register(SomeModel)

specify the UserResource and require the requesting user be an admin
api.register(User, UserResource, auth=admin_auth)

configure the urls
api.setup()

	
verify_user(user)

	Verifies whether the requesting user is an administrator

	Parameters

	user – the auth.User instance of the requesting user

	Return type

	Boolean indicating whether the user is an administrator

	
class APIKeyAuthentication(model, protected_methods=None)

	Subclass that allows you to provide an API Key model to authenticate requests
with.

Note

Must provide an API key model with at least the following two
fields:

	key

	secret

example API key model
class APIKey(db.Model):
 key = CharField()
 secret = CharField()
 user = ForeignKeyField(User)

instantiating the auth
api_key_auth = APIKeyAuthentication(model=APIKey)

	Parameters

	
	model – a Database.Model subclass to persist API keys.

	protected_methods – A list or tuple of HTTP verbs to require auth for

Utilities

	
get_object_or_404(query_or_model, *query)

	Provides a handy way of getting an object or 404ing if not found, useful
for urls that match based on ID.

	Parameters

	
	query_or_model – a query or model to filter using the given expressions

	query – a list of query expressions

@app.route('/blog/<title>/')
def blog_detail(title):
 blog = get_object_or_404(Blog.select().where(Blog.active==True), Blog.title==title)
 return render_template('blog/detail.html', blog=blog)

	
object_list(template_name, qr[, var_name='object_list'[, **kwargs]])

	Wraps the given query and handles pagination automatically. Pagination defaults to 20
but can be changed by passing in paginate_by=XX.

	Parameters

	
	template_name – template to render

	qr – a select query

	var_name – the template variable name to use for the paginated query

	kwargs – arbitrary context to pass in to the template

@app.route('/blog/')
def blog_list():
 active = Blog.select().where(Blog.active==True)
 return object_list('blog/index.html', active)

<!-- template -->
{% for blog in object_list %}
 {# render the blog here #}
{% endfor %}

{% if page > 1 %}
 Prev
{% endif %}
{% if page < pagination.get_pages() %}
 Next
{% endif %}

	
get_next()

	
	Return type

	a URL suitable for redirecting to

	
slugify(s)

	Use a regular expression to make arbitrary string s URL-friendly

	Parameters

	s – any string to be slugified

	Return type

	url-friendly version of string s

	
class PaginatedQuery(query_or_model, paginate_by)

	A wrapper around a query (or model class) that handles pagination.

	
page_var = 'page'

	The URL variable used to store the current page

Example:

query = Blog.select().where(Blog.active==True)
pq = PaginatedQuery(query)

assume url was /?page=3
obj_list = pq.get_list() # returns 3rd page of results

pq.get_page() # returns "3"

pq.get_pages() # returns total objects / objects-per-page

	
get_list()

	
	Return type

	a list of objects for the request page

	
get_page()

	
	Return type

	an integer representing the currently requested page

	
get_pages()

	
	Return type

	the number of pages in the entire result set

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	Admin (built-in class)

 	AdminAuthentication (built-in class)

 	AdminPanel (built-in class)

 	api_detail() (RestResource method)

 	api_list() (RestResource method)

 	APIKeyAuthentication (built-in class)

 	
 	Auth (built-in class)

 	auth_required() (Admin method)

 	authenticate() (Auth method)

 	Authentication (built-in class)

 	authorize() (Authentication method)

 	(UserAuthentication method)

B

 	
 	BaseUser (built-in class)

C

 	
 	check_delete() (RestResource method)

 	check_get() (RestResource method)

 	check_password() (BaseUser method)

 	(built-in function)

 	
 	check_post() (RestResource method)

 	check_put() (RestResource method)

 	check_user_permission() (Admin method)

 	columns (ModelAdmin attribute)

 	create() (RestResource method)

D

 	
 	Database (built-in class)

 	
 	delete() (RestResource method)

E

 	
 	edit() (RestResource method)

 	
 	exclude (ModelAdmin attribute)

F

 	
 	fields (ModelAdmin attribute)

 	filter_exclude (ModelAdmin attribute)

 	(RestResource attribute)

 	
 	filter_fields (ModelAdmin attribute)

 	(RestResource attribute)

G

 	
 	get_add_form() (ModelAdmin method)

 	get_api_name() (RestResource method)

 	get_context() (AdminPanel method)

 	get_edit_form() (ModelAdmin method)

 	get_filter_form() (ModelAdmin method)

 	get_form() (ModelAdmin method)

 	get_list() (PaginatedQuery method)

 	get_logged_in_user() (Auth method)

 	get_login_form() (Auth method)

 	get_model_admin() (Auth method)

 	get_next() (built-in function)

 	get_object() (ModelAdmin method)

 	get_object_or_404() (built-in function)

 	
 	get_page() (PaginatedQuery method)

 	get_pages() (PaginatedQuery method)

 	get_query() (ModelAdmin method)

 	(RestResource method)

 	get_template_name() (AdminPanel method)

 	get_template_overrides() (ModelAdmin method)

 	get_url_name() (AdminPanel method)

 	(ModelAdmin method)

 	get_urls() (Admin method)

 	(AdminPanel method)

 	(Auth method)

 	(ModelAdmin method)

 	get_user_model() (Auth method)

I

 	
 	include_resources (RestResource attribute)

L

 	
 	login_required() (Auth method)

 	
 	login_user() (Auth method)

 	logout_user() (Auth method)

M

 	
 	make_password() (built-in function)

 	
 	Model (Database attribute)

 	ModelAdmin (built-in class)

O

 	
 	object_detail() (RestResource method)

 	
 	object_list() (built-in function)

 	(RestResource method)

P

 	
 	PaginatedQuery (built-in class)

 	
 	prepare_data() (RestResource method)

 	process_filters() (ModelAdmin method)

R

 	
 	register() (Admin method)

 	(RestAPI method)

 	register_panel() (Admin method)

 	
 	render() (AdminPanel method)

 	RestAPI (built-in class)

 	RestResource (built-in class)

 	RestrictOwnerResource (built-in class)

S

 	
 	save_model() (ModelAdmin method)

 	save_object() (RestResource method)

 	set_owner() (RestrictOwnerResource method)

 	
 	set_password() (BaseUser method)

 	setup() (Admin method)

 	(RestAPI method)

 	slugify() (built-in function), [1]

T

 	
 	template_name (AdminPanel attribute)

U

 	
 	UserAuthentication (built-in class)

V

 	
 	validate_owner() (RestrictOwnerResource method)

 	
 	verify_user() (AdminAuthentication method)

Example App

 _static/down.png

_images/fp-admin-btn-form.png
Message Admin
Dashboard / Message / Editing
Message (3) Addnew Expot Editing

Edit Message

Content Im an admin on this crazy site

_static/peewee.jpg

_images/fp-admin-btn.png
Message (3)

Addnew Export

e s

O User

o admin

Content

T an admin on this crazy site

Pub Date

2011-09-16 18:47:17

Add filter

With selected.

Reset

Edit | Delete

_static/plus.png

_static/file.png

_static/minus.png

_images/fp-admin.jpg
Admin Dashboard

Navigation

Notes User stats

_static/up.png

_images/fp-getting-started.jpg
Site Admin omsboe i

Admin Dashboard

Models.

_images/fp-admin-filter.png
Message Admin

Dashboard / Message

Message 3) | Addnew Export

equal to v select

O User Content
O coleffer flask and peewee, together at last
o user Hey, Im just some user

o admin T an admin on this crazy site

Add filter. With selected.

Reset

Pub Date
2011-09-16 18:36:15 Edit | Delete
2011-09-16 18:46:59 Edit | Delete
2011-09-16 18:47:17 Edit | Delete

_images/fp-admin-modal.png
Select a User

Previous | Next

_static/up-pressed.png

_images/fp-message-admin-2.jpg
Message Admin

Dashboard | Message
Message | Addnew Export

[user Content
[] coleifer fiask and peewes, togather at last!
O user Hey, Im just some user

O admin Im an admin on this crazy site

Add filer

Pub Date
20110916 1836:15

201109-16 18:46:59

20110016 18:47:17

With selected.

Edt | Delete

Edt | Delete

Edt | Delete

_images/fp-message-admin.jpg
Message Adi

Navigation

[—— PP, e v

_images/fp-note-admin-2.jpg
Admin

Note Admin
P - | Models

Message creses g

s s asampie ot oz s

nav.xhtml

 Table of Contents

 		
 flask-peewee

 		
 Installing

 		
 Using git

 		
 Getting Started

 		
 Creating a flask app

 		
 Creating a simple model

 		
 Setting up a simple base template

 		
 Adding users to the site

 		
 Managing content using the admin area

 		
 Exposing content using a REST API

 		
 Database Wrapper

 		
 Other examples

 		
 Admin Interface

 		
 Getting started

 		
 Customizing how models are displayed

 		
 Overriding Admin Templates

 		
 Nicer display for Foreign Key fields

 		
 Filters

 		
 Admin ModelForms

 		
 Creating admin panels

 		
 Handling File Uploads

 		
 Authentication

 		
 Getting started

 		
 Marking areas of the site as login required

 		
 Retrieving the current user

 		
 Accessing the user in the templates

 		
 Using a custom “User” model

 		
 REST Api

 		
 Getting started with the API

 		
 Project models

 		
 Creating a RestAPI

 		
 Customizing what is returned

 		
 Allowing users to post objects

 		
 Restricting API access on a per-model basis

 		
 Locking down a resource

 		
 Filtering records and querying

 		
 Sorting results

 		
 Limiting results and pagination

 		
 Utilities

 		
 Getting objects

 		
 Misc

 		
 Using gevent

 		
 Database configuration

 		
 Monkey-patch the thread module

 		
 Rationale

 		
 API

 		
 Admin

 		
 Exposing Models with the ModelAdmin

 		
 Extending admin functionality using AdminPanel

 		
 Auth

 		
 The BaseUser mixin

 		
 Database

 		
 REST API

 		
 RESTful Resources and their subclasses

 		
 Authenticating requests to the API

 		
 Utilities

_images/fp-note-panel.jpg
Admin Dashboard

Notes User stats
admin: ey everyone, keep an eye on “colefer’, may be New users his wesk: 0
spam ot

Messages this week: 0

Here's ancther noe|

save

_static/ajax-loader.gif

_images/fp-note-admin.jpg
Note Admin

e - | Models.

man_Notscfst a1 Oz

_images/fp-note-panel-2.jpg
Admin Dashboard

Notes User stats

admin: Here! New users this week: 0

gJe on "coleifer’, may e Messages this week: 0

‘spam bot

save

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

