
flask-peewee Documentation
Release 0.6.7

charles leifer

Sep 21, 2018

Contents

1 Installing 3
1.1 Using git . 3

2 Getting Started 5
2.1 Creating a flask app . 5
2.2 Creating a simple model . 6
2.3 Setting up a simple base template . 6
2.4 Adding users to the site . 7
2.5 Managing content using the admin area . 8
2.6 Exposing content using a REST API . 10

3 Database Wrapper 13
3.1 Other examples . 14

4 Admin Interface 15
4.1 Getting started . 15
4.2 Customizing how models are displayed . 16
4.3 Nicer display for Foreign Key fields . 18
4.4 Creating admin panels . 20
4.5 Handling File Uploads . 22

5 Authentication 25
5.1 Getting started . 25
5.2 Marking areas of the site as login required . 26
5.3 Retrieving the current user . 26
5.4 Accessing the user in the templates . 26
5.5 Using a custom “User” model . 26

6 REST Api 29
6.1 Getting started with the API . 29
6.2 Creating a RestAPI . 30
6.3 Customizing what is returned . 31
6.4 Allowing users to post objects . 32
6.5 Restricting API access on a per-model basis . 34
6.6 Locking down a resource . 34
6.7 Filtering records and querying . 35
6.8 Sorting results . 36

i

6.9 Limiting results and pagination . 36

7 Utilities 37
7.1 Getting objects . 37
7.2 Misc . 38

8 Using gevent 39
8.1 Database configuration . 39
8.2 Monkey-patch the thread module . 39
8.3 Rationale . 40

9 API 41
9.1 Admin . 41
9.2 Auth . 47
9.3 Database . 50
9.4 REST API . 51
9.5 Utilities . 57

10 Indices and tables 61

ii

flask-peewee Documentation, Release 0.6.7

Warning: I’m sorry to announce that flask-peewee will now be in maintenance-only mode. This decision is
motivated by a number of factors:

• Flask-Admin provides a superior admin interface and has support for peewee models.

• Flask-Security and Flask-Login both provide authentication functionality, and work well with Peewee.

• Most importantly, though, I do not find myself wanting to work on flask-peewee.

I plan on rewriting the Database and REST API portions of flask-peewee and repackaging them as a new
library, but flask-peewee as it stands currently will be in maintenance-only mode.

Welcome to the flask-peewee documentation!

provides a layer of integration between the flask web framework and the peewee orm.

Contents:

Contents 1

https://flask-admin.readthedocs.io/en/latest/
https://pythonhosted.org/Flask-Security/
https://flask-login.readthedocs.io/en/latest/
http://flask.pocoo.org/
https://peewee.readthedocs.io/

flask-peewee Documentation, Release 0.6.7

2 Contents

CHAPTER 1

Installing

flask-peewee can be installed very easily using pip.

pip install flask-peewee

If you do not have the dependencies installed already, pip will install them for you, but for reference they are:

• flask

• peewee

• wtforms

• wtf-peewee

• python 2.5 or greater

1.1 Using git

If you want to run the very latest, feel free to pull down the repo from github and install by hand.

git clone https://github.com/coleifer/flask-peewee.git
cd flask-peewee
python setup.py install

You can run the tests using the test-runner:

python setup.py test

3

http://www.pip-installer.org/en/latest/index.html
https://github.com/mitsuhiko/flask
https://github.com/coleifer/peewee
https://bitbucket.org/simplecodes/wtforms
https://github.com/coleifer/wtf-peewee

flask-peewee Documentation, Release 0.6.7

4 Chapter 1. Installing

CHAPTER 2

Getting Started

The goal of this document is to help get you up and running quickly. So without further ado, let’s get started.

Note: Hopefully you have some familiarity with the flask framework and the peewee orm, but if not those links
should help you get started.

Note: For a complete example project, check the example app that ships with flask-peewee.

2.1 Creating a flask app

First, be sure you have installed flask-peewee and its dependencies. You can verify by running the test suite: python
setup.py test.

After ensuring things are installed, open a new file called “app.py” and enter the following code:

from flask import Flask

app = Flask(__name__)
app.config.from_object(__name__)

if __name__ == '__main__':
app.run()

This isn’t very exciting, but we can check out our project by running the app:

$ python app.py

* Running on http://127.0.0.1:5000/

* Restarting with reloader

Navigating to the url listed will show a simple 404 page, because we haven’t configured any templates or views yet.

5

http://flask.pocoo.org/
https://peewee.readthedocs.io/
https://github.com/coleifer/flask-peewee/tree/master/example

flask-peewee Documentation, Release 0.6.7

2.2 Creating a simple model

Let’s add a simple model. Before we can do that, though, it is necessary to initialize the peewee database wrapper and
configure the database:

from flask import Flask

flask-peewee bindings
from flask_peewee.db import Database

configure our database
DATABASE = {

'name': 'example.db',
'engine': 'peewee.SqliteDatabase',

}
DEBUG = True
SECRET_KEY = 'ssshhhh'

app = Flask(__name__)
app.config.from_object(__name__)

instantiate the db wrapper
db = Database(app)

if __name__ == '__main__':
app.run()

What this does is provides us with request handlers which connect to the database on each request and close it when
the request is finished. It also provides a base model class which is configured to work with the database specified in
the configuration.

Now we can create a model:

import datetime
from peewee import *

class Note(db.Model):
message = TextField()
created = DateTimeField(default=datetime.datetime.now)

Note: The model we created, Note, subclasses db.Model, which in turn is a subclass of peewee.Model that is
pre-configured to talk to our database.

2.3 Setting up a simple base template

We’ll need a simple template to serve as the base template for our app, so create a folder named templates. In the
templates folder create a file base.html and add the following:

<!doctype html>
<html>
<title>Test site</title>
<body>

(continues on next page)

6 Chapter 2. Getting Started

flask-peewee Documentation, Release 0.6.7

(continued from previous page)

<h2>{% block content_title %}{% endblock %}</h2>
{% block content %}{% endblock %}

</body>
</html>

2.4 Adding users to the site

Before we can edit these Note models in the admin, we’ll need to have some way of authenticating users on the site.
This is where Auth comes in. Auth provides a User model and views for logging in and logging out, among other
things, and is required by the Admin.

from flask_peewee.auth import Auth

create an Auth object for use with our flask app and database wrapper
auth = Auth(app, db)

Let’s also modify the code that runs our app to ensure our tables get created if need be:

if __name__ == '__main__':
auth.User.create_table(fail_silently=True)
Note.create_table(fail_silently=True)

app.run()

After cleaning up the imports and declarations, we have something like the following:

import datetime
from flask import Flask
from flask_peewee.auth import Auth
from flask_peewee.db import Database
from peewee import *

configure our database
DATABASE = {

'name': 'example.db',
'engine': 'peewee.SqliteDatabase',

}
DEBUG = True
SECRET_KEY = 'ssshhhh'

app = Flask(__name__)
app.config.from_object(__name__)

instantiate the db wrapper
db = Database(app)

class Note(db.Model):
message = TextField()
created = DateTimeField(default=datetime.datetime.now)

create an Auth object for use with our flask app and database wrapper
auth = Auth(app, db)

(continues on next page)

2.4. Adding users to the site 7

flask-peewee Documentation, Release 0.6.7

(continued from previous page)

if __name__ == '__main__':
auth.User.create_table(fail_silently=True)
Note.create_table(fail_silently=True)

app.run()

2.5 Managing content using the admin area

Now we’re ready to add the admin. Place the following lines of code after the initialization of the Auth class:

from flask_peewee.admin import Admin

admin = Admin(app, auth)
admin.register(Note)

admin.setup()

We now have a functioning admin site! Of course, we’ll need a user log in with, so open up an interactive python shell
in the directory alongside the app and run the following:

from app import auth
auth.User.create_table(fail_silently=True) # make sure table created.
admin = auth.User(username='admin', email='', admin=True, active=True)
admin.set_password('admin')
admin.save()

It should now be possible to:

1. navigate to http://127.0.0.1:5000/admin/

2. enter in the username and password (“admin”, “admin”)

3. be redirected to the admin dashboard

The dashboard is pretty empty right now. Go ahead and add a few notes (http://127.0.0.1:5000/admin/note/). If you
navigate now to the note modeladmin you will see something like this:

8 Chapter 2. Getting Started

http://127.0.0.1:5000/admin/
http://127.0.0.1:5000/admin/note/

flask-peewee Documentation, Release 0.6.7

This is pretty lousy so let’s clean it up to display the message and when it was published. We can do that by customizing
the columns displayed. Edit the app with the following changes:

from flask_peewee.admin import Admin, ModelAdmin

class NoteAdmin(ModelAdmin):
columns = ('message', 'created',)

admin = Admin(app, auth)

admin.register(Note, NoteAdmin)

admin.setup()

Now our modeladmin should look more like this:

Let’s go ahead and add the auth.User model to the admin as well:

2.5. Managing content using the admin area 9

flask-peewee Documentation, Release 0.6.7

admin.register(Note, NoteAdmin)
auth.register_admin(admin)

admin.setup()

2.6 Exposing content using a REST API

Adding a REST API is very similar to how we added the Admin interface. We will create a RestAPI object, and
then register our project’s models with it. If we want to customize things, we can subclass RestResource.

The first step, then, is to create the RestAPI object:

from flask_peewee.rest import RestAPI

create a RestAPI container
api = RestAPI(app)

api.setup()

This doesn’t do anything yet, we need to register models with it first. Let’s register the Note model from earlier:

create a RestAPI container
api = RestAPI(app)

register the Note model
api.register(Note)

api.setup()

Assuming your project is still running, try executing the following command (or just browse to the url listed):

$ curl http://127.0.0.1:5000/api/note/

You should see something like the following:

{
"meta": {
"model": "note",
"next": "",
"page": 1,
"previous": ""

},
"objects": [
{

"message": "blah blah blah this is a note",
"id": 1,
"created": "2011-09-23 09:07:39"

},
{

"message": "this is another note!",
"id": 2,
"created": "2011-09-23 09:07:54"

}
]

}

10 Chapter 2. Getting Started

flask-peewee Documentation, Release 0.6.7

Suppose we want it to also be possible for registered users to be able to POST messages using the API. If you try and
make a POST right now, you will get a 401 response:

$ curl -i -d '' http://127.0.0.1:5000/api/note/

HTTP/1.0 401 UNAUTHORIZED
WWW-Authenticate: Basic realm="Login Required"
Content-Type: text/html; charset=utf-8
Content-Length: 21
Server: Werkzeug/0.8-dev Python/2.6.6
Date: Fri, 23 Sep 2011 14:45:38 GMT

Authentication failed

This is because we have not configured any Authentication method for our RestAPI.

Note: The default authentication mechanism for the API only accepts GET requests. In order to handle
POST/PUT/DELETE you will need to use a subclass of the Authentication class.

In order to allow users of the site to post notes, we will use the UserAuthentication subclass, which requires
that API requests be made with HTTP Basic auth and that the auth credentials match those of one of the auth.User
models.

from flask_peewee.rest import RestAPI, UserAuthentication

instantiate the user auth
user_auth = UserAuthentication(auth)

create a RestAPI container
api = RestAPI(app, default_auth=user_auth)

Now we can post new notes using a command-line tool like curl:

$ curl -u admin:admin -d data='{"message": "hello api"}' http://127.0.0.1:5000/api/
→˓note/

{
"message": "hello api",
"id": 3,
"created": "2011-09-23 13:14:56"

}

You can see that it returns a serialized copy of the new Note object.

Note: This is just a small example of what you can do with the Rest API – refer to the Rest API docs for more detailed
information, including

• limiting access on a per-model basis

• customizing which fields are returned by the API

• filtering and querying using GET parameters

2.6. Exposing content using a REST API 11

flask-peewee Documentation, Release 0.6.7

12 Chapter 2. Getting Started

CHAPTER 3

Database Wrapper

The Peewee database wrapper provides a thin layer of integration between flask apps and the peewee orm.

The database wrapper is important because it ensures that a database connection is created for every incoming request,
and closed upon request completion. It also provides a subclass of Model which works with the database specified in
your app’s configuration.

Most features of flask-peewee require a database wrapper, so you very likely always create one.

The database wrapper reads its configuration from the Flask application. The configuration requires only two argu-
ments, but any additional arguments will be passed to the database driver when connecting:

name The name of the database to connect to (or filename if using sqlite3)

engine The database driver to use, must be a subclass of peewee.Database.

from flask import Flask
from peewee import *

from flask_peewee.db import Database

DATABASE = {
'name': 'example.db',
'engine': 'peewee.SqliteDatabase',

}

app = Flask(__name__)
app.config.from_object(__name__) # load database configuration from this module

instantiate the db wrapper
db = Database(app)

start creating models
class Blog(db.Model):

name = CharField()
.. etc

13

flask-peewee Documentation, Release 0.6.7

3.1 Other examples

To connect to MySQL using authentication:

DATABASE = {
'name': 'my_database',
'engine': 'peewee.MySQLDatabase',
'user': 'db_user',
'passwd': 'secret password',

}

If using a multi-threaded WSGI server:

DATABASE = {
'name': 'foo.db',
'engine': 'peewee.SqliteDatabase',
'threadlocals': True,

}

14 Chapter 3. Database Wrapper

CHAPTER 4

Admin Interface

Many web applications ship with an “admin area”, where priveleged users can view and modify content. By intro-
specting your application’s models, flask-peewee can provide you with straightforward, easily-extensible forms for
managing your application content.

Here’s a screen-shot of the admin dashboard:

4.1 Getting started

To get started with the admin, there are just a couple steps:

15

flask-peewee Documentation, Release 0.6.7

1. Instantiate an Auth backend for your project – this component is responsible for providing the security for the
admin area

from flask import Flask

from flask_peewee.auth import Auth
from flask_peewee.db import Database

app = Flask(__name__)
db = Database(app)

needed for authentication
auth = Auth(app, db)

2. Instantiate an Admin object

continued from above...
from flask_peewee.admin import Admin

admin = Admin(app, auth)

3. Register any ModelAdmin or AdminPanel objects you would like to expose via the admin

continuing... assuming "Blog" and "Entry" models
admin.register(Blog) # register "Blog" with vanilla ModelAdmin
admin.register(Entry, EntryAdmin) # register "Entry" with a custom
→˓ModelAdmin subclass

assume we have an "AdminPanel" called "NotePanel"
admin.register_panel('Notes', NotePanel)

4. Call Admin.setup(), which registers the admin blueprint and configures the urls

after all models and panels are registered, configure the urls
admin.setup()

Note: For a complete example, check the example which ships with the project.

4.2 Customizing how models are displayed

We’ll use the “Message” model taken from the example app, which looks like this:

class Message(db.Model):
user = ForeignKeyField(User)
content = TextField()
pub_date = DateTimeField(default=datetime.datetime.now)

def __unicode__(self):
return '%s: %s' % (self.user, self.content)

If we were to simply register this model with the admin, it would look something like this:

16 Chapter 4. Admin Interface

https://github.com/coleifer/flask-peewee/tree/master/example

flask-peewee Documentation, Release 0.6.7

admin = Admin(app, auth)
admin.register(Message)

admin.setup()

A quick way to improve the appearance of this view is to specify which columns to display. To start customizing how
the Message model is displayed in the admin, we’ll subclass ModelAdmin.

from flask_peewee.admin import ModelAdmin

class MessageAdmin(ModelAdmin):
columns = ('user', 'content', 'pub_date',)

admin.register(Message, MessageAdmin)

admin.setup()

Now the admin shows all the columns and they can be clicked to sort the data:

4.2. Customizing how models are displayed 17

flask-peewee Documentation, Release 0.6.7

Suppose privacy is a big concern, and under no circumstances should a user be able to see another user’s messages –
even in the admin. This can be done by overriding the get_query() method:

def get_query(self):
return self.model.select().where(self.model.user == g.user)

Now a user will only be able to see and edit their own messages.

4.2.1 Overriding Admin Templates

Use the ModelAdmin.get_template_overrides() method to override templates for an individual Model:

class MessageAdmin(ModelAdmin):
columns = ('user', 'content', 'pub_date',)

def get_template_overrides(self):
override the edit template with a custom one
return {'edit': 'messages/admin/edit.html'}

admin.register(Message, MessageAdmin)

This instructs the admin to use a custom template for the edit page in the Message admin. That template is stored in
the application’s templates. It might look something like this:

{% extends "admin/models/edit.html" %} {# override the default edit template #}

{# override any blocks here #}

There are five templates that can be overridden:

• index

• add

• edit

• delete

• export

4.3 Nicer display for Foreign Key fields

If you have a model that foreign keys to another, by default the related model instances are displayed in a <select>
input.

This can be problematic if you have a large list of models to search (causes slow load time, hurts the database). To
mitigate this pain, foreign key lookups can be done using a paginated widget that supports type-ahead searching.

Setting this up is very easy:

class MessageAdmin(ModelAdmin):
columns = ('user', 'content', 'pub_date',)
foreign_key_lookups = {'user': 'username'}

When flask-peewee sees the foreign_key_lookups it will use the special modal window to select instances. This
applies to both filters and model forms:

18 Chapter 4. Admin Interface

flask-peewee Documentation, Release 0.6.7

4.3.1 Filters

1. Select a user by clicking the “Select. . . ” button

2. A modal window with a paginated list and typeahead search appers:

3. The button now indicates the selected user, clicking again will reload the dialog:

4.3. Nicer display for Foreign Key fields 19

flask-peewee Documentation, Release 0.6.7

4.3.2 Admin ModelForms

The interface is the same as with the filters, except the foreign key field is replaced by a simple button:

4.4 Creating admin panels

AdminPanel classes provide a way of extending the admin dashboard with arbitrary functionality. These are dis-
played as “panels” on the admin dashboard with a customizable template. They may additionally, however, define any
views and urls. These views will automatically be protected by the same authentication used throughout the admin
area.

Some example use-cases for AdminPanels might be:

• Display some at-a-glance functionality in the dashboard, like stats on new user signups.

• Provide a set of views that should only be visible to site administrators, for example a mailing-list app.

• Control global site settings, turn on and off features, etc.

Referring to the example app, we’ll look at a simple panel that allows administrators to leave “notes” in the admin
area:

20 Chapter 4. Admin Interface

https://github.com/coleifer/flask-peewee/tree/master/example

flask-peewee Documentation, Release 0.6.7

Here’s what the panel class looks like:

4.4. Creating admin panels 21

flask-peewee Documentation, Release 0.6.7

class NotePanel(AdminPanel):
template_name = 'admin/notes.html'

def get_urls(self):
return (

('/create/', self.create),
)

def create(self):
if request.method == 'POST':

if request.form.get('message'):
Note.create(

user=auth.get_logged_in_user(),
message=request.form['message'],

)
next = request.form.get('next') or self.dashboard_url()
return redirect(next)

def get_context(self):
return {

'note_list': Note.select().order_by(Note.created_date.desc()).limit(3)
}

When the admin dashboard is rendered (/admin/), all panels are rendered using the templates the specify. The
template is rendered with the context provided by the panel’s get_context method.

And the template:

{% extends "admin/panels/default.html" %}

{% block panel_content %}
{% for note in note_list %}
<p>{{ note.user.username }}: {{ note.message }}</p>

{% endfor %}
<form method="post" action="{{ url_for(panel.get_url_name('create')) }}">
<input type="hidden" value="{{ request.url }}" />
<p><textarea name="message"></textarea></p>
<p><button type="submit" class="btn small">Save</button></p>

</form>
{% endblock %}

A panel can provide as many urls and views as you like. These views will all be protected by the same authentication
as other parts of the admin area.

4.5 Handling File Uploads

Flask and wtforms both provide support for handling file uploads (on the server and generating form fields). Peewee,
however, does not have a “file field” – generally I store a path to a file on disk and thus use a CharField for the
storage.

Here’s a very simple example of a “photo” model and a ModelAdmin that enables file uploads.

models.py
import datetime
import os

(continues on next page)

22 Chapter 4. Admin Interface

flask-peewee Documentation, Release 0.6.7

(continued from previous page)

from flask import Markup
from peewee import *
from werkzeug import secure_filename

from app import app, db

class Photo(db.Model):
image = CharField()

def __unicode__(self):
return self.image

def save_image(self, file_obj):
self.image = secure_filename(file_obj.filename)
full_path = os.path.join(app.config['MEDIA_ROOT'], self.image)
file_obj.save(full_path)
self.save()

def url(self):
return os.path.join(app.config['MEDIA_URL'], self.image)

def thumb(self):
return Markup('' % self.url())

admin.py
from flask import request
from flask_peewee.admin import Admin, ModelAdmin
from wtforms.fields import FileField, HiddenField
from wtforms.form import Form

from app import app, db
from auth import auth
from models import Photo

admin = Admin(app, auth)

class PhotoAdmin(ModelAdmin):
columns = ['image', 'thumb']

def get_form(self, adding=False):
class PhotoForm(Form):

image = HiddenField()
image_file = FileField(u'Image file')

return PhotoForm

def save_model(self, instance, form, adding=False):
instance = super(PhotoAdmin, self).save_model(instance, form, adding)
if 'image_file' in request.files:

file = request.files['image_file']
instance.save_image(file)

return instance

(continues on next page)

4.5. Handling File Uploads 23

flask-peewee Documentation, Release 0.6.7

(continued from previous page)

admin.register(Photo, PhotoAdmin)

24 Chapter 4. Admin Interface

CHAPTER 5

Authentication

The Authentication class provides a means of authenticating users of the site. It is designed to work out-of-the-
box with a simple User model, but can be heavily customized.

The Auth system is comprised of a single class which is responsible for coordinating incoming requests to your
project with known users. It provides the following:

• views for login and logout

• model to store user data (or you can provide your own)

• mechanism for identifying users across requests (uses session storage)

All of these pieces can be customized, but the default out-of-box implementation aims to provide a good starting place.

The auth system is also designed to work closely with the Admin Interface.

5.1 Getting started

In order to provide a method for users to authenticate with your site, instantiate an Auth backend for your project:

from flask import Flask

from flask_peewee.auth import Auth
from flask_peewee.db import Database

app = Flask(__name__)
db = Database(app)

needed for authentication
auth = Auth(app, db)

Note: user is reserverd keyword in Postgres. Pass db_table to Auth to override db table.

25

flask-peewee Documentation, Release 0.6.7

5.2 Marking areas of the site as login required

If you want to mark specific areas of your site as requiring auth, you can decorate views using the Auth.
login_required() decorator:

@app.route('/private/')
@auth.login_required
def private_timeline():

user = auth.get_logged_in_user()

... display the private timeline for the logged-in user

If the request comes from someone who has not logged-in with the site, they are redirected to the Auth.login()
view, which allows the user to authenticate. After successfully logging-in, they will be redirected to the page they
requested initially.

5.3 Retrieving the current user

Whenever in a request context, the currently logged-in user is available by calling Auth.
get_logged_in_user(), which will return None if the requesting user is not logged in.

The auth system also registers a pre-request hook that stores the currently logged-in user in the special flask variable
g.

5.4 Accessing the user in the templates

The auth system registers a template context processor which makes the logged-in user available in any template:

{% if user %}
<p>Hello {{ user.username }}</p>

{% else %}
<p>Please log in</

→˓p>
{% endif %}

5.5 Using a custom “User” model

It is easy to use your own model for the User, though depending on the amount of changes it may be necessary to
override methods in both the Auth and Admin classes.

Unless you want to override the default behavior of the Auth class’ mechanism for actually authenticating users
(which you may want to do if relying on a 3rd-party for auth) – you will want to be sure your User model implements
two methods:

• set_password(password) – takes a raw password and stores an encrypted version on model

• check_password(password) – returns whether or not the supplied password matches the one stored on
the model instance

Note: The BaseUser mixin provides default implementations of these two methods.

26 Chapter 5. Authentication

http://flask.pocoo.org/docs/reqcontext/

flask-peewee Documentation, Release 0.6.7

Here’s a simple example of extending the auth system to use a custom user model:

from flask_peewee.auth import BaseUser # <-- implements set_password and check_
→˓password

app = Flask(__name__)
db = Database(app)

create our custom user model. note that we're mixing in BaseUser in order to
use the default auth methods it implements, "set_password" and "check_password"
class User(db.Model, BaseUser):

username = CharField()
password = CharField()
email = CharField()

... our custom fields ...
is_superuser = BooleanField()

create a modeladmin for it
class UserAdmin(ModelAdmin):

columns = ('username', 'email', 'is_superuser',)

Make sure the user's password is hashed, after it's been changed in
the admin interface. If we don't do this, the password will be saved
in clear text inside the database and login will be impossible.
def save_model(self, instance, form, adding=False):

orig_password = instance.password

user = super(UserAdmin, self).save_model(instance, form, adding)

if orig_password != form.password.data:
user.set_password(form.password.data)
user.save()

return user

subclass Auth so we can return our custom classes
class CustomAuth(Auth):

def get_user_model(self):
return User

def get_model_admin(self):
return UserAdmin

instantiate the auth
auth = CustomAuth(app, db)

Here’s how you might integrate the custom auth with the admin area of your site:

subclass Admin to check for whether the user is a superuser
class CustomAdmin(Admin):

def check_user_permission(self, user):
return user.is_superuser

instantiate the admin
admin = CustomAdmin(app, auth)

(continues on next page)

5.5. Using a custom “User” model 27

flask-peewee Documentation, Release 0.6.7

(continued from previous page)

admin.register(User, UserAdmin)
admin.setup()

28 Chapter 5. Authentication

CHAPTER 6

REST Api

flask-peewee comes with some tools for exposing your project’s models via a RESTful API. There are several com-
ponents to the rest module, but the basic setup is to create an instance of RestAPI and then register your project’s
models with subclasses of RestResource.

Each RestResource you expose via the API will support, by default, the following:

• /api/<model name>/ – GET and POST requests

• /api/<model name>/<primary key>/ – GET, PUT and DELETE requests

Also, you can filter results by columns on the model using django-style syntax, for example:

• /api/blog/?name=Some%20Blog

• /api/blog/?author__username=some_blogger

6.1 Getting started with the API

In this documentation we’ll start with a very simple API and build it out. The complete version of this API is included
in the example-app, so feel free to refer there.

The project will be a simple ‘twitter-like’ app where users can post short messages and “follow” other users.

Note: If you’re using apache with mod_wsgi and would like to use any of the auth backends that use basic auth, you
will need to add the following directive: WSGIPassAuthorization On

6.1.1 Project models

There are three main models - User, Relationship and Message - which we will expose via the API. Here is a
truncated version of what they look like:

29

flask-peewee Documentation, Release 0.6.7

from flask_peewee.auth import BaseUser

class User(db.Model, BaseUser):
username = CharField()
password = CharField()
email = CharField()
join_date = DateTimeField(default=datetime.datetime.now)
active = BooleanField(default=True)
admin = BooleanField(default=False)

class Relationship(db.Model):
from_user = ForeignKeyField(User, related_name='relationships')
to_user = ForeignKeyField(User, related_name='related_to')

class Message(db.Model):
user = ForeignKeyField(User)
content = TextField()
pub_date = DateTimeField(default=datetime.datetime.now)

6.2 Creating a RestAPI

The RestAPI acts as a container for the various RestResource objects we will expose. By default it binds all
resources to /api/<model-name>/.

Here we’ll create a simple api and register our models:

from flask_peewee.rest import RestAPI

from app import app # our project's Flask app

instantiate our api wrapper
api = RestAPI(app)

register our models so they are exposed via /api/<model>/
api.register(User)
api.register(Relationship)
api.register(Message)

configure the urls
api.setup()

Now if we hit our project at /api/message/ we should get something like the following:

{
"meta": {
"model": "message",
"next": "",
"page": 1,
"previous": ""

},
"objects": [
{

"content": "flask and peewee, together at last!",
"pub_date": "2011-09-16 18:36:15",
"user_id": 1,

(continues on next page)

30 Chapter 6. REST Api

flask-peewee Documentation, Release 0.6.7

(continued from previous page)

"id": 1
},
{

"content": "Hey, I'm just some user",
"pub_date": "2011-09-16 18:46:59",
"user_id": 2,
"id": 2

}
]

}

Say we’re interested in the first message, we can hit /api/message/1/ to view just the details on that object:

{
content: "flask and peewee, together at last!"
pub_date: "2011-09-16 18:36:15"
user_id: 1
id: 1

}

6.3 Customizing what is returned

If you access the User API endpoint, we quickly notice a problem:

$ curl http://127.0.0.1:5000/api/user/

{
"meta": {
"model": "user",
"next": "",
"page": 1,
"previous": ""

},
"objects": [
{

"username": "admin",
"admin": true,
"email": "",
"join_date": "2011-09-16 18:34:49",
"active": true,
"password": "d033e22ae348aeb5660fc2140aec35850c4da997",
"id": 1

},
{

"username": "coleifer",
"admin": false,
"email": "coleifer@gmail.com",
"join_date": "2011-09-16 18:35:56",
"active": true,
"password": "a94a8fe5ccb19ba61c4c0873d391e987982fbbd3",
"id": 2

}
]

}

6.3. Customizing what is returned 31

flask-peewee Documentation, Release 0.6.7

Passwords and email addresses are being exposed. In order to exclude these fields from serialization, subclass
RestResource:

from flask_peewee.rest import RestAPI, RestResource

from app import app # our project's Flask app

instantiate our api wrapper
api = RestAPI(app)

create a special resource for users that excludes email and password
class UserResource(RestResource):

exclude = ('password', 'email',)

register our models so they are exposed via /api/<model>/
api.register(User, UserResource) # specify the UserResource
api.register(Relationship)
api.register(Message)

Now emails and passwords are no longer returned by the API.

6.4 Allowing users to post objects

What if we want to create new messages via the Api? Or modify/delete existing messages?

$ curl -i -d '' http://127.0.0.1:5000/api/message/

HTTP/1.0 401 UNAUTHORIZED
WWW-Authenticate: Basic realm="Login Required"
Content-Type: text/html; charset=utf-8
Content-Length: 21
Server: Werkzeug/0.8-dev Python/2.6.6
Date: Thu, 22 Sep 2011 16:14:21 GMT

Authentication failed

The authentication failed because the default authentication mechanism only allows read-only access.

In order to allow users to create messages via the API, we need to use a subclass of Authentication that allows
POST requests. We also want to ensure that the requesting user is a member of the site.

For this we will use the UserAuthentication class as the default auth mechanism.

from auth import auth # import the Auth object used by our project

from flask_peewee.rest import RestAPI, RestResource, UserAuthentication

create an instance of UserAuthentication
user_auth = UserAuthentication(auth)

instantiate our api wrapper, specifying user_auth as the default
api = RestAPI(app, default_auth=user_auth)

create a special resource for users that excludes email and password
class UserResource(RestResource):

exclude = ('password', 'email',)

(continues on next page)

32 Chapter 6. REST Api

flask-peewee Documentation, Release 0.6.7

(continued from previous page)

register our models so they are exposed via /api/<model>/
api.register(User, UserResource) # specify the UserResource
api.register(Relationship)
api.register(Message)

configure the urls
api.setup()

Now we should be able to POST new messages.

import json
import httplib2

sock = httplib2.Http()
sock.add_credentials('admin', 'admin') # use basic auth

message = {'user_id': 1, 'content': 'hello api'}
msg_json = json.dumps(message)

headers, resp = sock.request('http://localhost:5000/api/message/', 'POST', body=msg_
→˓json)

response = json.loads(resp)

The response object will look something like this:

{
'content': 'hello api',
'user_id': 1,
'pub_date': '2011-09-22 11:25:02',
'id': 3

}

There is a problem with this, however. Notice how the user_id was passed in with the POST data? This effectively
will let a user post a message as another user. It also means a user can use PUT requests to modify another user’s
message:

continued from above script
update = {'content': 'haxed you, bro'}
update_json = json.dumps(update)

headers, resp = sock.request('http://127.0.0.1:5000/api/message/2/', 'PUT',
→˓body=update_json)

response = json.loads(resp)

The response will look like this:

{
'content': 'haxed you, bro',
'pub_date': '2011-09-16 18:36:15',
'user_id': 2,
'id': 2

}

This is a problem – we need a way of ensuring that users can only edit their own messages. Furthermore, when they

6.4. Allowing users to post objects 33

flask-peewee Documentation, Release 0.6.7

create messages we need to make sure the message is assigned to them.

6.5 Restricting API access on a per-model basis

flask-peewee comes with a special subclass of RestResource that restricts POST/PUT/DELETE requests to prevent
users from modifying another user’s content.

from flask_peewee.rest import RestrictOwnerResource

class MessageResource(RestrictOwnerResource):
owner_field = 'user'

api.register(Message, MessageResource)

Now, if we try and modify the message, we get a 403 Forbidden:

headers, resp = sock.request('http://127.0.0.1:5000/api/message/2/', 'PUT',
→˓body=update_json)
print headers['status']

prints 403

It is fine to modify our own message, though (message with id=1):

headers, resp = sock.request('http://127.0.0.1:5000/api/message/1/', 'PUT',
→˓body=update_json)
print headers['status']

prints 200

Under-the-hood, the implementation of the RestrictOwnerResource is pretty simple.

• PUT / DELETE – verify the authenticated user is the owner of the object

• POST – assign the authenticated user as the owner of the new object

6.6 Locking down a resource

Suppose we want to restrict normal users from modifying User resources. For this we can use a special subclass of
UserAuthentication that restricts access to administrators:

from flask_peewee.rest import AdminAuthentication

instantiate our user-based auth
user_auth = UserAuthentication(auth)

instantiate admin-only auth
admin_auth = AdminAuthentication(auth)

instantiate our api wrapper, specifying user_auth as the default
api = RestAPI(app, default_auth=user_auth)

register the UserResource with admin auth
api.register(User, UserResource, auth=admin_auth)

34 Chapter 6. REST Api

https://github.com/coleifer/flask-peewee/blob/master/flask_peewee/rest.py#L284

flask-peewee Documentation, Release 0.6.7

6.7 Filtering records and querying

A REST Api is not very useful if it cannot be queried in a meaningful fashion. To this end, the flask-peewee
RestResource objects support “django-style” filtering:

$ curl http://127.0.0.1:5000/api/message/?user=2

This call will return only messages by the User with id=2:

{
"meta": {
"model": "message",
"next": "",
"page": 1,
"previous": ""

},
"objects": [
{

"content": "haxed you, bro",
"pub_date": "2011-09-16 18:36:15",
"user_id": 2,
"id": 2

}
]

}

Joins can be traversed using the django double-underscore notation:

$ curl http://127.0.0.1:5000/api/message/?user__username=admin

{
"meta": {
"model": "message",
"next": "",
"page": 1,
"previous": ""

},
"objects": [
{

"content": "flask and peewee, together at last!",
"pub_date": "2011-09-16 18:36:15",
"user_id": 1,
"id": 1

},
{

"content": "hello api",
"pub_date": "2011-09-22 11:25:02",
"user_id": 1,
"id": 3

}
]

}

It is also supported to use different comparison operators with the same double-underscore notation:

$ curl http://127.0.0.1:5000/api/user/?user__lt=2

6.7. Filtering records and querying 35

flask-peewee Documentation, Release 0.6.7

{
"meta": {
"model": "user",
"next": "",
"page": 1,
"previous": ""
},

"objects": [{
"username": "admin",
"admin": true,
"email": "admin@admin",
"active": true,
"password": "214de$25",
"id": 1
}]

}

Valid Comparison Operators are: ‘eq’, ‘lt’, ‘lte’, ‘gt’, ‘gte’, ‘ne’, ‘in’, ‘is’, ‘like’, ‘ilike’

6.8 Sorting results

Results can be sorted by specifying an ordering as a GET argument. The ordering must be a column on the model.

/api/message/?ordering=pub_date

If you would like to order objects “descending”, place a “-” (hyphen character) before the column name:

/api/message/?ordering=-pub_date

6.9 Limiting results and pagination

By default, resources are paginated 20 per-page. If you want to return less, you can specify a limit in the querystring.

/api/message/?limit=2

In the “meta” section of the response, URIs for the “next” and “previous” sets of results are available:

meta: {
model: "message"
next: "/api/message/?limit=1&page=3"
page: 2
previous: "/api/message/?limit=1&page=1"

}

36 Chapter 6. REST Api

CHAPTER 7

Utilities

flask-peewee ships with several useful utilities. If you’re coming from the django world, some of these functions may
look familiar to you.

7.1 Getting objects

get_object_or_404()

Provides a handy way of getting an object or 404ing if not found, useful for urls that match based on ID.

@app.route('/blog/<title>/')
def blog_detail(title):

blog = get_object_or_404(Blog.select().where(Blog.active==True), Blog.
→˓title==title)

return render_template('blog/detail.html', blog=blog)

object_list()

Wraps the given query and handles pagination automatically. Pagination defaults to 20 but can be changed
by passing in paginate_by=XX.

@app.route('/blog/')
def blog_list():

active = Blog.select().where(Blog.active==True)
return object_list('blog/index.html', active)

<!-- template -->
{% for blog in object_list %}
{# render the blog here #}

{% endfor %}

{% if page > 1 %}
Prev

(continues on next page)

37

flask-peewee Documentation, Release 0.6.7

(continued from previous page)

{% endif %}
{% if page < pagination.get_pages() %}
Next

{% endif %}

PaginatedQuery

A wrapper around a query (or model class) that handles pagination.

Example:

query = Blog.select().where(Blog.active==True)
pq = PaginatedQuery(query)

assume url was /?page=3
obj_list = pq.get_list() # returns 3rd page of results

pq.get_page() # returns "3"

pq.get_pages() # returns total objects / objects-per-page

7.2 Misc

slugify(string)
Convert a string into something suitable for use as part of a URL, e.g. “This is a url” becomes “this-is-a-url”

from flask_peewee.utils import slugify

class Blog(db.Model):
title = CharField()
slug = CharField()

def save(self, *args, **kwargs):
self.slug = slugify(self.title)
super(Blog, self).save(*args, **kwargs)

make_password(raw_password)
Create a salted hash for the given plain-text password

check_password(raw_password, enc_password)
Compare a plain-text password against a salted/hashed password

38 Chapter 7. Utilities

CHAPTER 8

Using gevent

If you would like to serve your flask application using gevent, there are two small settings you will need to add.

8.1 Database configuration

Instruct peewee to store connection information in a thread local:

app configuration
DATABASE = {

'name': 'my_db',
'engine': 'peewee.PostgresqlDatabase',
'user': 'postgres',
'threadlocals': True, # <-- this

}

8.2 Monkey-patch the thread module

Some time before instantiating a Database object (and preferrably at the very “beginning” of your code) you will
want to monkey-patch the standard library thread module:

from gevent import monkey; monkey.patch_thread()

If you want to patch everything (recommended):

from gevent import monkey; monkey.patch_all()

Note: Remember to monkey-patch before initializing your app

39

http://www.gevent.org/gevent.monkey.html

flask-peewee Documentation, Release 0.6.7

8.3 Rationale

flask-peewee opens a connection-per-request. Flask stores things, like “per-request” information, in a special object
called a context local. Flask will ensure that this works even in a greened environment. Peewee does not automatically
work in a “greened” environment, and stores connection state on the database instance in a local. Peewee can use a
thread local instead, which ensures connections are not shared across threads. When using peewee with gevent, it is
necessary to make this “threadlocal” a “greenlet local” by monkeypatching the thread module.

API in depth:

40 Chapter 8. Using gevent

http://flask.pocoo.org/docs/reqcontext/

CHAPTER 9

API

9.1 Admin

class Admin(app, auth[, blueprint_factory[, template_helper[, prefix]]])
Class used to expose an admin area at a certain url in your application. The Admin object implements a flask
blueprint and acts as the central registry for models and panels you wish to expose in the admin.

The Admin object coordinates the registration of models and panels and provides a method for ensuring a user
has permission to access the admin area.

The Admin object requires an Auth instance when being instantiated, which in turn requires a Flask app and a
py:class:Database wrapper.

Here is an example of how you might instantiate an Admin object:

from flask import Flask

from flask_peewee.admin import Admin
from flask_peewee.auth import Auth
from flask_peewee.db import Database

app = Flask(__name__)
db = Database(app)

needed for authentication
auth = Auth(app, db)

instantiate the Admin object for our project
admin = Admin(app, auth)

Parameters

• app – flask application to bind admin to

• auth – Auth instance which will provide authentication

41

flask-peewee Documentation, Release 0.6.7

• blueprint_factory – an object that will create the BluePrint used by the admin

• template_helper – a subclass of AdminTemplateHelper that provides helpers and
context to used by the admin templates

• prefix – url to bind admin to, defaults to /admin

register(model[, admin_class=ModelAdmin])
Register a model to expose in the admin area. A ModelAdmin subclass can be provided along with the
model, allowing for customization of the model’s display and behavior.

Example usage:

will use the default ModelAdmin subclass to display model
admin.register(BlogModel)

class EntryAdmin(ModelAdmin):
columns = ('title', 'blog', 'pub_date',)

admin.register(EntryModel, EntryAdmin)

Warning: All models must be registered before calling setup()

Parameters

• model – peewee model to expose via the admin

• admin_class – ModelAdmin or subclass to use with given model

register_panel(title, panel)
Register a AdminPanel subclass for display in the admin dashboard.

Example usage:

class HelloWorldPanel(AdminPanel):
template_name = 'admin/panels/hello.html'

def get_context(self):
return {

'message': 'Hello world',
}

admin.register_panel('Hello world', HelloWorldPanel)

Warning: All panels must be registered before calling setup()

Parameters

• title – identifier for panel, example might be “Site Stats”

• panel – subclass of AdminPanel to display

setup()
Configures urls for models and panels, then registers blueprint with the Flask application. Use this method
when you have finished registering all the models and panels with the admin object, but before starting

42 Chapter 9. API

flask-peewee Documentation, Release 0.6.7

the WSGI application. For a sample implementation, check out example/main.py in the example
application supplied with flask-peewee.

register all models, etc
admin.register(...)

finish up initialization of the admin object
admin.setup()

if __name__ == '__main__':
run the WSGI application
app.run()

Note: call setup() after registering your models and panels

check_user_permission(user)
Check whether the given user has permission to access to the admin area. The default implementation
simply checks whether the admin field is checked, but you can provide your own logic.

This method simply controls access to the admin area as a whole. In the event the user is not permitted to
access the admin (this function returns False), they will receive a HTTP Response Forbidden (403).

Default implementation:

def check_user_permission(self, user):
return user.admin

Parameters user – the currently logged-in user, exposed by the Auth instance

Return type Boolean

auth_required(func)
Decorator that ensures the requesting user has permission. The implementation first checks whether
the requesting user is logged in, and if not redirects to the login view. If the user is logged in, it calls
check_user_permission(). Only if this call returns True is the actual view function called.

get_urls()
Get a tuple of 2-tuples mapping urls to view functions that will be exposed by the admin. The default
implementation looks like this:

def get_urls(self):
return (

('/', self.auth_required(self.index)),
)

This method provides an extension point for providing any additional “global” urls you would like to
expose.

Note: Remember to decorate any additional urls you might add with auth_required() to ensure
they are not accessible by unauthenticated users.

9.1. Admin 43

flask-peewee Documentation, Release 0.6.7

9.1.1 Exposing Models with the ModelAdmin

class ModelAdmin
Class that determines how a peewee Model is exposed in the admin area. Provides a way of encapsulating
model-specific configuration and behaviors. Provided when registering a model with the Admin instance (see
Admin.register()).

columns
List or tuple of columns should be displayed in the list index. By default if no columns are specified the
Model’s __unicode__() will be used.

Note: Valid values for columns are the following:

• field on a model

• attribute on a model instance

• callable on a model instance (called with no parameters)

If a column is a model field, it will be sortable.

class EntryAdmin(ModelAdmin):
columns = ['title', 'pub_date', 'blog']

filter_exclude
Exclude certain fields from being exposed as filters. Related fields can be excluded using “__” notation,
e.g. user__password

filter_fields
Only allow filtering on the given fields

exclude
A list of field names to exclude from the “add” and “edit” forms

fields
Only display the given fields on the “add” and “edit” form

paginate_by = 20
Number of records to display on index pages

filter_paginate_by = 15
Default pagination when filtering in a modal dialog

delete_collect_objects = True
Collect and display a list of “dependencies” when deleting

delete_recursive = True
Delete “dependencies” recursively

get_query()
Determines the list of objects that will be exposed in the admin. By default this will be all objects, but you
can use this method to further restrict the query.

This method is called within the context of a request, so you can access the Flask.request object or
use the Auth instance to determine the currently-logged-in user.

Here’s an example showing how the query is restricted based on whether the given user is a “super user”
or not:

44 Chapter 9. API

flask-peewee Documentation, Release 0.6.7

class UserAdmin(ModelAdmin):
def get_query():

ask the auth system for the currently logged-in user
current_user = self.auth.get_logged_in_user()

if they are not a superuser, only show them their own
account in the admin
if not current_user.is_superuser:

return User.select().where(User.id==current_user.id)

otherwise, show them all users
return User.select()

Return type A SelectQuery that represents the list of objects to expose

get_object(pk)
This method retrieves the object matching the given primary key. The implementation uses
get_query() to retrieve the base list of objects, then queries within that for the given primary key.

Return type The model instance with the given pk, raising a DoesNotExist in the event the
model instance does not exist.

get_form([adding=False])
Provides a useful extension point in the event you want to define custom fields or custom validation be-
havior.

Parameters adding (boolean) – indicates whether adding a new instance or editing existing

Return type A wtf-peewee Form subclass that will be used when adding or editing model in-
stances in the admin.

get_add_form()
Allows you to specify a different form when adding new instances versus editing existing instances. The
default implementation simply calls get_form().

get_edit_form()
Allows you to specify a different form when editing existing instances versus adding new instances. The
default implementation simply calls get_form().

get_filter_form()
Provide a special form for use when filtering the list of objects in the model admin’s index/export views.
This form is slightly different in that it is tailored for use when filtering the list of models.

Return type A special Form instance (FilterForm) that will be used when filtering the list
of objects in the index view.

save_model(instance, form, adding=False)
Method responsible for persisting changes to the database. Called by both the add and the edit views.

Here is an example from the default auth.User ModelAdmin, in which the password is displayed as a
sha1, but if the user is adding or edits the existing password, it re-hashes:

def save_model(self, instance, form, adding=False):
orig_password = instance.password

user = super(UserAdmin, self).save_model(instance, form, adding)

if orig_password != form.password.data:
user.set_password(form.password.data)

(continues on next page)

9.1. Admin 45

http://github.com/coleifer/wtf-peewee

flask-peewee Documentation, Release 0.6.7

(continued from previous page)

user.save()

return user

Parameters

• instance – an unsaved model instance

• form – a validated form instance

• adding – boolean to indicate whether we are adding a new instance or saving an existing

get_template_overrides()
Hook for specifying template overrides. Should return a dictionary containing view names as keys and
template names as values. Possible choices for keys are:

• index

• add

• edit

• delete

• export

class UserModelAdmin(ModelAdmin):
def get_template_overrides(self):

return {'index': 'users/admin/index_override.html'}

get_urls()
Useful as a hook for extending ModelAdmin functionality with additional urls.

Note: It is not necessary to decorate the views specified by this method since the Admin instance will
handle this during registration and setup.

Return type tuple of 2-tuples consisting of a mapping between url and view

get_url_name(name)
Since urls are namespaced, this function provides an easy way to get full urls to views provided by this
ModelAdmin

process_filters(query)
Applies any filters specified by the user to the given query, returning metadata about the filters.

Returns a 4-tuple containing:

• special Form instance containing fields for filtering

• filtered query

• a list containing the currently selected filters

• a tree-structure containing the fields available for filtering (FieldTreeNode)

Return type A tuple as described above

46 Chapter 9. API

flask-peewee Documentation, Release 0.6.7

9.1.2 Extending admin functionality using AdminPanel

class AdminPanel
Class that provides a simple interface for providing arbitrary extensions to the admin. These are displayed as
“panels” on the admin dashboard with a customizable template. They may additionally, however, define any
views and urls. These views will automatically be protected by the same authentication used throughout the
admin area.

Some example use-cases for AdminPanels might be:

• Display some at-a-glance functionality in the dashboard, like stats on new user signups.

• Provide a set of views that should only be visible to site administrators, for example a mailing-list app.

• Control global site settings, turn on and off features, etc.

template_name
What template to use to render the panel in the admin dashboard, defaults to 'admin/panels/
default.html'.

get_urls()
Useful as a hook for extending AdminPanel functionality with custom urls and views.

Note: It is not necessary to decorate the views specified by this method since the Admin instance will
handle this during registration and setup.

Return type Returns a tuple of 2-tuples mapping url to view

get_url_name(name)
Since urls are namespaced, this function provides an easy way to get full urls to views provided by this
panel

Parameters name – string representation of the view function whose url you want

Return type String representing url

<!-- taken from example -->
<!-- will return something like /admin/notes/create/ -->
{{ url_for(panel.get_url_name('create')) }}

get_template_name()
Return the template used to render this panel in the dashboard. By default simply returns the template
stored under AdminPanel.template_name.

get_context()
Return the context to be used when rendering the dashboard template.

Return type Dictionary

render()
Render the panel template with the context – this is what gets displayed in the admin dashboard.

9.2 Auth

class Auth(app, db[, user_model=None[, prefix=’/accounts’]], db_table=’user’)
The class that provides methods for authenticating users and tracking users across requests. It also provides a
model for persisting users to the database, though this can be customized.

9.2. Auth 47

flask-peewee Documentation, Release 0.6.7

The auth framework is used by the Admin and can also be integrated with the RestAPI.

Here is an example of how to use the Auth framework:

from flask import Flask

from flask_peewee.auth import Auth
from flask_peewee.db import Database

app = Flask(__name__)
db = Database(app)

needed for authentication
auth = Auth(app, db)

mark a view as requiring login
@app.route('/private/')
@auth.login_required
def private_timeline():

get the currently-logged-in user
user = auth.get_logged_in_user()

Unlike the Admin or the RestAPI, there is no explicit setup() method call when using the Auth system.
Creation of the auth blueprint and registration with the Flask app happen automatically during instantiation.

Note: A context processor is automatically registered that provides the currently logged-in user across all
templates, available as “user”. If no user is logged in, the value of this will be None.

Note: A pre-request handler is automatically registered which attempts to retrieve the current logged-in user
and store it on the global flask variable g.

Parameters

• app – flask application to bind admin to

• db – Database database wrapper for flask app

• user_model – User model to use

• prefix – url to bind authentication views to, defaults to /accounts/

• db_table – Create db table using db_table name. user is reserved keyword in postgres.

default_next_url = 'homepage'
The url to redirect to upon successful login in the event a ?next=<xxx> is not provided.

get_logged_in_user()

Note: Since this method relies on the session storage to track users across requests, this method must be
called while within a RequestContext.

Return type returns the currently logged-in User, or None if session is anonymous

48 Chapter 9. API

flask-peewee Documentation, Release 0.6.7

login_required(func)
Function decorator that ensures a view is only accessible by authenticated users. If the user is not authed
they are redirected to the login view.

Note: this decorator should be applied closest to the original view function

@app.route('/private/')
@auth.login_required
def private():

this view is only accessible by logged-in users
return render_template('private.html')

Parameters func – a view function to be marked as login-required

Return type if the user is logged in, return the view as normal, otherwise returns a redirect to
the login page

get_user_model()

Return type Peewee model to use for persisting user data and authentication

get_model_admin([model_admin=None])
Provide a ModelAdmin class suitable for use with the User model. Specifically addresses the need to
re-hash passwords when changing them via the admin.

The default implementation includes an override of the ModelAdmin.save_model() method to in-
telligently hash passwords:

class UserAdmin(model_admin):
columns = ['username', 'email', 'active', 'admin']

def save_model(self, instance, form, adding=False):
orig_password = instance.password

user = super(UserAdmin, self).save_model(instance, form, adding)

if orig_password != form.password.data:
user.set_password(form.password.data)
user.save()

return user

Parameters model_admin – subclass of ModelAdmin to use as the base class

Return type a subclass of ModelAdmin suitable for use with the User model

get_urls()
A mapping of url to view. The default implementation provides views for login and logout only, but you
might extend this to add registration and password change views.

Default implementation:

def get_urls(self):
return (

('/logout/', self.logout),
('/login/', self.login),

)

9.2. Auth 49

flask-peewee Documentation, Release 0.6.7

Return type a tuple of 2-tuples mapping url to view function.

get_login_form()

Return type a wtforms.Form subclass to use for retrieving any user info required for login

authenticate(username, password)
Given the username and password, retrieve the user with the matching credentials if they exist. No
exceptions should be raised by this method.

Return type User model if successful, otherwise False

login_user(user)
Mark the given user as “logged-in”. In the default implementation, this entails storing data in the Session
to indicate the successful login.

Parameters user – User instance

logout_user(user)
Mark the requesting user as logged-out

Parameters user – User instance

9.2.1 The BaseUser mixin

class BaseUser
Provides default implementations for password hashing and validation. The auth framework requires two meth-
ods be implemented by the User model. A default implementation of these methods is provided by the
BaseUser mixin.

set_password(password)
Encrypts the given password and stores the encrypted version on the model. This method is useful when
registering a new user and storing the password, or modifying the password when a user elects to change.

check_password(password)
Verifies if the given plaintext password matches the encrypted version stored on the model. This method
on the User model is called specifically by the Auth.authenticate() method.

Return type Boolean

9.3 Database

class Database(app)
The database wrapper provides integration between the peewee ORM and flask. It reads database configuration
information from the flask app configuration and manages connections across requests.

The db wrapper also provides a Model subclass which is configured to work with the database specified by the
application’s config.

To configure the database specify a database engine and name:

DATABASE = {
'name': 'example.db',
'engine': 'peewee.SqliteDatabase',

}

Here is an example of how you might use the database wrapper:

50 Chapter 9. API

flask-peewee Documentation, Release 0.6.7

instantiate the db wrapper
db = Database(app)

start creating models
class Blog(db.Model):

this model will automatically work with the database specified
in the application's config.

Parameters app – flask application to bind admin to

Model
Model subclass that works with the database specified by the app’s config

9.4 REST API

class RestAPI(app[, prefix=’/api’[, default_auth=None[, name=’api’]]])
The RestAPI acts as a container for the various RestResource objects. By default it binds all resources to
/api/<model-name>/. Much like the Admin, it is a centralized registry of resources.

Example of creating a RestAPI instance for a flask app:

from flask_peewee.rest import RestAPI

from app import app # our project's Flask app

instantiate our api wrapper
api = RestAPI(app)

register a model with the API
api.register(SomeModel)

configure URLs
api.setup()

Note: Like the flask admin, the RestAPI has a setup() method which must be called after all resources
have been registered.

Parameters

• app – flask application to bind API to

• prefix – url to serve REST API from

• default_auth – default Authentication type to use with registered resources

• name – the name for the API blueprint

register(model[, provider=RestResource[, auth=None[, allowed_methods=None]]])
Register a model to expose via the API.

Parameters

• model – Model to expose via API

• provider – subclass of RestResource to use for this model

9.4. REST API 51

flask-peewee Documentation, Release 0.6.7

• auth – authentication type to use for this resource, falling back to RestAPI.
default_auth

• allowed_methods – list of HTTP verbs to allow, defaults to ['GET', 'POST',
'PUT', 'DELETE']

setup()
Register the API BluePrint and configure urls.

Warning: This must be called after registering your resources.

9.4.1 RESTful Resources and their subclasses

class RestResource(rest_api, model, authentication[, allowed_methods=None])
Class that determines how a peewee Model is exposed by the Rest API. Provides a way of encapsulating
model-specific configuration and behaviors. Provided when registering a model with the RestAPI instance
(see RestAPI.register()).

Should not be instantiated directly in most cases. Instead should be “registered” with a RestAPI instance.

Example usage:

instantiate our api wrapper, passing in a reference to the Flask app
api = RestAPI(app)

create a RestResource subclass
class UserResource(RestResource):

exclude = ('password', 'email',)

assume we have a "User" model, register it with the custom resource
api.register(User, UserResource)

paginate_by = 20
Determines how many results to return for a given API query.

Note: Fewer results can be requested by specifying a limit, but paginate_by is the upper bound.

fields = None
A list or tuple of fields to expose when serializing

exclude = None
A list or tuple of fields to not expose when serializing

filter_exclude
A list of fields that cannot be used to filter API results

filter_fields
A list of fields that can be used to filter the API results

filter_recursive = True
Allow filtering on related resources

include_resources
A mapping of field name to resource class for handling of foreign-keys. When provided, foreign keys will
be “nested”.

52 Chapter 9. API

flask-peewee Documentation, Release 0.6.7

class UserResource(RestResource):
exclude = ('password', 'email')

class MessageResource(RestResource):
include_resources = {'user': UserResource} # 'user' is a foreign key field

/* messages without "include_resources" */
{
"content": "flask and peewee, together at last!",
"pub_date": "2011-09-16 18:36:15",
"id": 1,
"user": 2

},

/* messages with "include_resources = {'user': UserResource} */
{
"content": "flask and peewee, together at last!",
"pub_date": "2011-09-16 18:36:15",
"id": 1,
"user": {
"username": "coleifer",
"active": true,
"join_date": "2011-09-16 18:35:56",
"admin": false,
"id": 2

}
}

delete_recursive = True
Recursively delete dependencies

get_query()
Returns the list of objects to be exposed by the API. Provides an easy hook for restricting objects:

class UserResource(RestResource):
def get_query(self):

only return "active" users
return self.model.select().where(active=True)

Return type a SelectQuery containing the model instances to expose

prepare_data(obj, data)
This method provides a hook for modifying outgoing data. The default implementation no-ops, but you
could do any kind of munging here. The data returned by this method is passed to the serializer before
being returned as a json response.

Parameters

• obj – the object being serialized

• data – the dictionary representation of a model returned by the Serializer

Return type a dictionary of data to hand off

save_object(instance, raw_data)
Persist the instance to the database. The raw data supplied by the request is also available, but at the time
this method is called the instance has already been updated and populated with the incoming data.

Parameters

9.4. REST API 53

flask-peewee Documentation, Release 0.6.7

• instance – Model instance that has already been updated with the incoming
raw_data

• raw_data – data provided in the request

Return type a saved instance

api_list()
A view that dispatches based on the HTTP verb to either:

• GET: object_list()

• POST: create()

Return type Response

api_detail(pk)
A view that dispatches based on the HTTP verb to either:

• GET: object_detail()

• PUT: edit()

• DELETE: delete()

Return type Response

object_list()
Returns a serialized list of Model instances. These objects may be filtered, ordered, and/or paginated.

Return type Response

object_detail()
Returns a serialized Model instance.

Return type Response

create()
Creates a new Model instance based on the deserialized POST body.

Return type Response containing serialized new object

edit()
Edits an existing Model instance, updating it with the deserialized PUT body.

Return type Response containing serialized edited object

delete()
Deletes an existing Model instance from the database.

Return type Response indicating number of objects deleted, i.e. {'deleted': 1}

get_api_name()

Return type URL-friendly name to expose this resource as, defaults to the model’s name

check_get([obj=None])
A hook for pre-authorizing a GET request. By default returns True.

Return type Boolean indicating whether to allow the request to continue

check_post()
A hook for pre-authorizing a POST request. By default returns True.

Return type Boolean indicating whether to allow the request to continue

54 Chapter 9. API

flask-peewee Documentation, Release 0.6.7

check_put(obj)
A hook for pre-authorizing a PUT request. By default returns True.

Return type Boolean indicating whether to allow the request to continue

check_delete(obj)
A hook for pre-authorizing a DELETE request. By default returns True.

Return type Boolean indicating whether to allow the request to continue

class RestrictOwnerResource(RestResource)
This subclass of RestResource allows only the “owner” of an object to make changes via the API. It works
by verifying that the authenticated user matches the “owner” of the model instance, which is specified by setting
owner_field.

Additionally, it sets the “owner” to the authenticated user whenever saving or creating new instances.

owner_field = 'user'
Field on the model to use to verify ownership of the given instance.

validate_owner(user, obj)

Parameters

• user – an authenticated User instance

• obj – the Model instance being accessed via the API

Return type Boolean indicating whether the user can modify the object

set_owner(obj, user)
Mark the object as being owned by the provided user. The default implementation simply calls setattr.

Parameters

• obj – the Model instance being accessed via the API

• user – an authenticated User instance

9.4.2 Authenticating requests to the API

class Authentication([protected_methods=None])
Not to be confused with the auth.Authentication class, this class provides a single method,
authorize, which is used to determine whether to allow a given request to the API.

Parameters protected_methods – A list or tuple of HTTP verbs to require auth for

authorize()
This single method is called per-API-request.

Return type Boolean indicating whether to allow the given request through or not

class UserAuthentication(auth[, protected_methods=None])
Authenticates API requests by requiring the requesting user be a registered auth.User. Credentials are sup-
plied using HTTP basic auth.

Example usage:

from auth import auth # import the Auth object used by our project

from flask_peewee.rest import RestAPI, RestResource, UserAuthentication

create an instance of UserAuthentication
(continues on next page)

9.4. REST API 55

flask-peewee Documentation, Release 0.6.7

(continued from previous page)

user_auth = UserAuthentication(auth)

instantiate our api wrapper, specifying user_auth as the default
api = RestAPI(app, default_auth=user_auth)

create a special resource for users that excludes email and password
class UserResource(RestResource):

exclude = ('password', 'email',)

register our models so they are exposed via /api/<model>/
api.register(User, UserResource) # specify the UserResource

configure the urls
api.setup()

Parameters

• auth – an Authentication instance

• protected_methods – A list or tuple of HTTP verbs to require auth for

authorize()
Verifies, using HTTP Basic auth, that the username and password match a valid auth.Usermodel before
allowing the request to continue.

Return type Boolean indicating whether to allow the given request through or not

class AdminAuthentication(auth[, protected_methods=None])
Subclass of the UserAuthentication that further restricts which users are allowed through. The default
implementation checks whether the requesting user is an “admin” by checking whether the admin attribute is
set to True.

Example usage:

Authenticates API requests by requiring the requesting user be a registered auth.User. Credentials are sup-
plied using HTTP basic auth.

Example usage:

from auth import auth # import the Auth object used by our project

from flask_peewee.rest import RestAPI, RestResource, UserAuthentication,
→˓AdminAuthentication

create an instance of UserAuthentication and AdminAuthentication
user_auth = UserAuthentication(auth)
admin_auth = AdminAuthentication(auth)

instantiate our api wrapper, specifying user_auth as the default
api = RestAPI(app, default_auth=user_auth)

create a special resource for users that excludes email and password
class UserResource(RestResource):

exclude = ('password', 'email',)

(continues on next page)

56 Chapter 9. API

flask-peewee Documentation, Release 0.6.7

(continued from previous page)

register our models so they are exposed via /api/<model>/
api.register(SomeModel)

specify the UserResource and require the requesting user be an admin
api.register(User, UserResource, auth=admin_auth)

configure the urls
api.setup()

verify_user(user)
Verifies whether the requesting user is an administrator

Parameters user – the auth.User instance of the requesting user

Return type Boolean indicating whether the user is an administrator

class APIKeyAuthentication(model, protected_methods=None)
Subclass that allows you to provide an API Key model to authenticate requests with.

Note: Must provide an API key model with at least the following two fields:

• key

• secret

example API key model
class APIKey(db.Model):

key = CharField()
secret = CharField()
user = ForeignKeyField(User)

instantiating the auth
api_key_auth = APIKeyAuthentication(model=APIKey)

Parameters

• model – a Database.Model subclass to persist API keys.

• protected_methods – A list or tuple of HTTP verbs to require auth for

9.5 Utilities

get_object_or_404(query_or_model, *query)
Provides a handy way of getting an object or 404ing if not found, useful for urls that match based on ID.

Parameters

• query_or_model – a query or model to filter using the given expressions

• query – a list of query expressions

@app.route('/blog/<title>/')
def blog_detail(title):

blog = get_object_or_404(Blog.select().where(Blog.active==True), Blog.
→˓title==title)

return render_template('blog/detail.html', blog=blog)

9.5. Utilities 57

flask-peewee Documentation, Release 0.6.7

object_list(template_name, qr[, var_name=’object_list’[, **kwargs]])
Wraps the given query and handles pagination automatically. Pagination defaults to 20 but can be changed by
passing in paginate_by=XX.

Parameters

• template_name – template to render

• qr – a select query

• var_name – the template variable name to use for the paginated query

• kwargs – arbitrary context to pass in to the template

@app.route('/blog/')
def blog_list():

active = Blog.select().where(Blog.active==True)
return object_list('blog/index.html', active)

<!-- template -->
{% for blog in object_list %}
{# render the blog here #}

{% endfor %}

{% if page > 1 %}
Prev

{% endif %}
{% if page < pagination.get_pages() %}
Next

{% endif %}

get_next()

Return type a URL suitable for redirecting to

slugify(s)
Use a regular expression to make arbitrary string s URL-friendly

Parameters s – any string to be slugified

Return type url-friendly version of string s

class PaginatedQuery(query_or_model, paginate_by)
A wrapper around a query (or model class) that handles pagination.

page_var = 'page'
The URL variable used to store the current page

Example:

query = Blog.select().where(Blog.active==True)
pq = PaginatedQuery(query)

assume url was /?page=3
obj_list = pq.get_list() # returns 3rd page of results

pq.get_page() # returns "3"

pq.get_pages() # returns total objects / objects-per-page

get_list()

Return type a list of objects for the request page

58 Chapter 9. API

flask-peewee Documentation, Release 0.6.7

get_page()

Return type an integer representing the currently requested page

get_pages()

Return type the number of pages in the entire result set

9.5. Utilities 59

flask-peewee Documentation, Release 0.6.7

60 Chapter 9. API

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

61

flask-peewee Documentation, Release 0.6.7

62 Chapter 10. Indices and tables

Index

A
Admin (built-in class), 41
AdminAuthentication (built-in class), 56
AdminPanel (built-in class), 47
api_detail() (RestResource method), 54
api_list() (RestResource method), 54
APIKeyAuthentication (built-in class), 57
Auth (built-in class), 47
auth_required() (Admin method), 43
authenticate() (Auth method), 50
Authentication (built-in class), 55
authorize() (Authentication method), 55
authorize() (UserAuthentication method), 56

B
BaseUser (built-in class), 50

C
check_delete() (RestResource method), 55
check_get() (RestResource method), 54
check_password() (BaseUser method), 50
check_password() (built-in function), 38
check_post() (RestResource method), 54
check_put() (RestResource method), 54
check_user_permission() (Admin method), 43
columns (ModelAdmin attribute), 44
create() (RestResource method), 54

D
Database (built-in class), 50
delete() (RestResource method), 54

E
edit() (RestResource method), 54
exclude (ModelAdmin attribute), 44

F
fields (ModelAdmin attribute), 44
filter_exclude (ModelAdmin attribute), 44

filter_exclude (RestResource attribute), 52
filter_fields (ModelAdmin attribute), 44
filter_fields (RestResource attribute), 52

G
get_add_form() (ModelAdmin method), 45
get_api_name() (RestResource method), 54
get_context() (AdminPanel method), 47
get_edit_form() (ModelAdmin method), 45
get_filter_form() (ModelAdmin method), 45
get_form() (ModelAdmin method), 45
get_list() (PaginatedQuery method), 58
get_logged_in_user() (Auth method), 48
get_login_form() (Auth method), 50
get_model_admin() (Auth method), 49
get_next() (built-in function), 58
get_object() (ModelAdmin method), 45
get_object_or_404() (built-in function), 57
get_page() (PaginatedQuery method), 59
get_pages() (PaginatedQuery method), 59
get_query() (ModelAdmin method), 44
get_query() (RestResource method), 53
get_template_name() (AdminPanel method), 47
get_template_overrides() (ModelAdmin method), 46
get_url_name() (AdminPanel method), 47
get_url_name() (ModelAdmin method), 46
get_urls() (Admin method), 43
get_urls() (AdminPanel method), 47
get_urls() (Auth method), 49
get_urls() (ModelAdmin method), 46
get_user_model() (Auth method), 49

I
include_resources (RestResource attribute), 52

L
login_required() (Auth method), 48
login_user() (Auth method), 50
logout_user() (Auth method), 50

63

flask-peewee Documentation, Release 0.6.7

M
make_password() (built-in function), 38
Model (Database attribute), 51
ModelAdmin (built-in class), 44

O
object_detail() (RestResource method), 54
object_list() (built-in function), 57
object_list() (RestResource method), 54

P
PaginatedQuery (built-in class), 58
prepare_data() (RestResource method), 53
process_filters() (ModelAdmin method), 46

R
register() (Admin method), 42
register() (RestAPI method), 51
register_panel() (Admin method), 42
render() (AdminPanel method), 47
RestAPI (built-in class), 51
RestResource (built-in class), 52
RestrictOwnerResource (built-in class), 55

S
save_model() (ModelAdmin method), 45
save_object() (RestResource method), 53
set_owner() (RestrictOwnerResource method), 55
set_password() (BaseUser method), 50
setup() (Admin method), 42
setup() (RestAPI method), 52
slugify() (built-in function), 38, 58

T
template_name (AdminPanel attribute), 47

U
UserAuthentication (built-in class), 55

V
validate_owner() (RestrictOwnerResource method), 55
verify_user() (AdminAuthentication method), 57

64 Index

	Installing
	Using git

	Getting Started
	Creating a flask app
	Creating a simple model
	Setting up a simple base template
	Adding users to the site
	Managing content using the admin area
	Exposing content using a REST API

	Database Wrapper
	Other examples

	Admin Interface
	Getting started
	Customizing how models are displayed
	Nicer display for Foreign Key fields
	Creating admin panels
	Handling File Uploads

	Authentication
	Getting started
	Marking areas of the site as login required
	Retrieving the current user
	Accessing the user in the templates
	Using a custom “User” model

	REST Api
	Getting started with the API
	Creating a RestAPI
	Customizing what is returned
	Allowing users to post objects
	Restricting API access on a per-model basis
	Locking down a resource
	Filtering records and querying
	Sorting results
	Limiting results and pagination

	Utilities
	Getting objects
	Misc

	Using gevent
	Database configuration
	Monkey-patch the thread module
	Rationale

	API
	Admin
	Auth
	Database
	REST API
	Utilities

	Indices and tables

